Development of a subchannel void sensor and two-phase flow measurement in 10 x 10 rod bundle

被引:40
作者
Arai, Takahiro [1 ]
Furuya, Masahiro [1 ]
Kanai, Taizo [1 ]
Shirakawa, Kenetsu [1 ]
机构
[1] Cent Res Inst Elect Power Ind, Komae, Tokyo 2018511, Japan
关键词
Subchannel void sensor; Air-water two-phase flow; Rod bundle; Void fraction; Phasic velocity; Bubble chord length; Interfacial area concentration; WIRE-MESH SENSORS; INTERFACIAL AREA CONCENTRATION; AIR-WATER FLOW; TOMOGRAPH; EVOLUTION; PIPE;
D O I
10.1016/j.ijmultiphaseflow.2012.07.012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An accurate and detailed experimental database is crucial for modeling the multidimensional two-phase flow and for validating the numerical calculation results. In particular, a two-phase flow in the rod bundle flow channel is so complicated that it is difficult to measure a multidimensional flow structure. Based on the available reference, a point-measurement sensor for acquiring void fractions and bubble velocity distributions do not infer interactions of the subchannel flow dynamics, such as a cross flow and flow distribution, etc. In order to acquire multidimensional two-phase flow in a 10 x 10 rod bundle with an o.d. of 10 mm and length of 3110 mm, a new sensor consisting of 11 x 11 wire and 10 x 10 rod electrodes was developed. The electrical potential in the proximity region between the two wires creates a void fraction in the central subchannel, like a so-called wire-mesh sensor. A unique feature of the devised sensor is that the void fraction near the rod surface can be estimated from the electrical potential in the proximity region between one wire and one rod, meaning the additional 400 points of void fraction and phasic velocity in the 10 x 10 rod bundle can be acquired. The devised sensor demonstrates multidimensional flow structures, i.e. void fraction, phasic velocity, sauter mean diameter and interfacial area concentration distributions. Acquired data exhibit complexity of two-phase flow dynamics in a rod bundle flow channel, such as coalescence and the breakup of bubbles in transient phasic velocity distributions. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:183 / 192
页数:10
相关论文
共 16 条