List Edge Coloring of Planar Graphs Without Non-Induced 6-Cycles

被引:3
作者
Cai, Jiansheng [1 ]
机构
[1] Weifang Univ, Sch Math & Informat Sci, Weifang 261061, Shandong, Peoples R China
关键词
Planar graph; Coloring; Choosability; Combinatorial problem; CHOOSABILITY;
D O I
10.1007/s00373-014-1420-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is edge--colorable if for a given edge assignment L = {L(e) : e is an element of E(G)},, there exits a proper edge-coloring of such that for all e is an element of E(G). If is edge--colorable for every edge assignment with for e is an element of E(G), then is said to be edge--choosable. In this paper, we prove that if is a planar graph without non-induced -cycles, then is edge--choosable, where k = max{8, Delta (G) + 1}.
引用
收藏
页码:827 / 832
页数:6
相关论文
共 23 条
  • [11] Jenson T.R., 1995, Graph Coloring Problems
  • [12] Juvan M, 1999, J GRAPH THEOR, V32, P250, DOI 10.1002/(SICI)1097-0118(199911)32:3<250::AID-JGT5>3.0.CO
  • [13] 2-R
  • [14] LIST EDGE CHROMATIC NUMBER OF GRAPHS WITH LARGE GIRTH
    KOSTOCHKA, AV
    [J]. DISCRETE MATHEMATICS, 1992, 101 (1-3) : 189 - 201
  • [15] List edge and list total colorings of planar graphs without short cycles
    Liu, Bin
    Hou, Jianfeng
    Liu, Guizhen
    [J]. INFORMATION PROCESSING LETTERS, 2008, 108 (06) : 347 - 351
  • [16] Structural properties and edge choosability of planar graphs without 4-cycles
    Shen, Yufa
    Zheng, Guoping
    He, Wenjie
    Zhao, Yongqiang
    [J]. DISCRETE MATHEMATICS, 2008, 308 (23) : 5789 - 5794
  • [17] Choosability and edge choosability of planar graphs without five cycles
    Wang, WF
    Lih, KW
    [J]. APPLIED MATHEMATICS LETTERS, 2002, 15 (05) : 561 - 565
  • [18] Choosability and edge choosability of planar graphs without intersecting triangles
    Wang, WF
    Lih, KW
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) : 538 - 545
  • [19] Wang WF, 2001, EUR J COMBIN, V22, P71
  • [20] Structural properties and edge choosability of planar graphs without 6-cycles
    Weifan, W
    Lih, KW
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (03) : 267 - 276