A multiple-instance learning framework for diabetic retinopathy screening

被引:60
作者
Quellec, Gwenole [1 ]
Lamard, Mathieu [1 ,2 ]
Abramoff, Michael D. [3 ,4 ,5 ]
Decenciere, Etienne [6 ]
Lay, Bruno [7 ]
Erginay, Ali [8 ]
Cochener, Beatrice [1 ,2 ,9 ]
Cazuguel, Guy [1 ,10 ]
机构
[1] SFR ScInBioS, INSERM, UMR 1101, F-29200 Brest, France
[2] Univ Bretagne Occidentale, F-29200 Brest, France
[3] Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[6] MINES ParisTech, ARMINES, Ctr Math Morphol, F-77300 Fontainebleau, France
[7] ADCIS, F-14280 St Contest, France
[8] Hop Lariboisiere, APHP, Serv Ophtalmol, F-75475 Paris, France
[9] CHU Brest, Serv Ophtalmol, F-29200 Brest, France
[10] UEB, TELECOM Bretagne, INST TELECOM, Dpt ITI, F-29200 Brest, France
基金
美国国家卫生研究院;
关键词
Multiple-instance learning; Lesion detection; Pathology screening; Diabetic retinopathy; IMAGE RETRIEVAL; RELEVANCE FEEDBACK; DIAGNOSIS; PERFORMANCE; OPHDIAT(C); TRANSFORM; NETWORK; SYSTEMS;
D O I
10.1016/j.media.2012.06.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel multiple-instance learning framework, for automated image classification, is presented in this paper. Given reference images marked by clinicians as relevant or irrelevant, the image classifier is trained to detect patterns, of arbitrary size, that only appear in relevant images. After training, similar patterns are sought in new images in order to classify them as either relevant or irrelevant images. Therefore, no manual segmentations are required. As a consequence, large image datasets are available for training. The proposed framework was applied to diabetic retinopathy screening in 2-D retinal image datasets: Messidor (1200 images) and e-ophtha, a dataset of 25,702 examination records from the Ophdiat screening network (107,799 images). In this application, an image (or an examination record) is relevant if the patient should be referred to an ophthalmologist. Trained on one half of Messidor, the classifier achieved high performance on the other half of Messidor (A(z) = 0.881) and on e-ophtha (A(z) = 0.761). We observed, in a subset of 273 manually segmented images from e-ophtha, that all eight types of diabetic retinopathy lesions are detected. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1228 / 1240
页数:13
相关论文
共 41 条
[21]   OPHDIAT©: A telemedical network screening system for diabetic retinopathy in the Ile-de-France [J].
Massin, P. ;
Chabouis, A. ;
Erginay, A. ;
Viens-Bitker, C. ;
Lecleire-Collet, A. ;
Meas, T. ;
Guillausseau, P-J ;
Choupot, G. ;
Andre, B. ;
Denormandie, P. .
DIABETES & METABOLISM, 2008, 34 (03) :227-234
[22]  
McDonald K, 2005, LECT NOTES COMPUT SC, V3568, P61
[23]   A review of content-based image retrieval systems in medical applications -: clinical benefits and future directions [J].
Müller, H ;
Michoux, N ;
Bandon, D ;
Geissbuhler, A .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2004, 73 (01) :1-23
[24]   Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs [J].
Niemeijer, Meindert ;
van Ginneken, Bram ;
Cree, Michael J. ;
Mizutani, Atsushi ;
Quellec, Gwenole ;
Sanchez, Clara I. ;
Zhang, Bob ;
Hornero, Roberto ;
Lamard, Mathieu ;
Muramatsu, Chisako ;
Wu, Xiangqian ;
Cazuguel, Guy ;
You, Jane ;
Mayo, Agustin ;
Li, Qin ;
Hatanaka, Yuji ;
Cochener, Beatrice ;
Roux, Christian ;
Karray, Fakhri ;
Garcia, Maria ;
Fujita, Hiroshi ;
Abramoff, Michael D. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (01) :185-195
[25]   Information Fusion for Diabetic Retinopathy CAD in Digital Color Fundus Photographs [J].
Niemeijer, Meindert ;
Abramoff, Michael D. ;
van Ginneken, Bram .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (05) :775-785
[26]   COLOR INFORMATION FOR REGION-SEGMENTATION [J].
OHTA, Y ;
KANADE, T ;
SAKAI, T .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 13 (03) :222-241
[27]   Improved Automated Screening of Diabetic Retinopathy [J].
Oliveira, Carlos M. ;
Cristovao, Luis M. ;
Ribeiro, Maria Luisa ;
Faria Abreu, Jose R. .
OPHTHALMOLOGICA, 2011, 226 (04) :191-197
[28]  
Peters J, 2017, ADAPT COMPUT MACH LE
[29]   The efficacy of automated "disease/no disease'' grading for diabetic retinopathy in a systematic screening programme [J].
Philip, S. ;
Fleming, A. D. ;
Goatman, K. A. ;
Fonseca, S. ;
Mcnamee, P. ;
Scotland, G. S. ;
Prescott, G. J. ;
Sharp, P. F. ;
Olson, J. A. .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2007, 91 (11) :1512-1517
[30]   Wavelet optimization for content-based image retrieval in medical databases [J].
Quellec, G. ;
Lamard, M. ;
Cazuguel, G. ;
Cochener, B. ;
Roux, C. .
MEDICAL IMAGE ANALYSIS, 2010, 14 (02) :227-241