A multiple-instance learning framework for diabetic retinopathy screening

被引:60
作者
Quellec, Gwenole [1 ]
Lamard, Mathieu [1 ,2 ]
Abramoff, Michael D. [3 ,4 ,5 ]
Decenciere, Etienne [6 ]
Lay, Bruno [7 ]
Erginay, Ali [8 ]
Cochener, Beatrice [1 ,2 ,9 ]
Cazuguel, Guy [1 ,10 ]
机构
[1] SFR ScInBioS, INSERM, UMR 1101, F-29200 Brest, France
[2] Univ Bretagne Occidentale, F-29200 Brest, France
[3] Univ Iowa, Dept Ophthalmol & Visual Sci, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[6] MINES ParisTech, ARMINES, Ctr Math Morphol, F-77300 Fontainebleau, France
[7] ADCIS, F-14280 St Contest, France
[8] Hop Lariboisiere, APHP, Serv Ophtalmol, F-75475 Paris, France
[9] CHU Brest, Serv Ophtalmol, F-29200 Brest, France
[10] UEB, TELECOM Bretagne, INST TELECOM, Dpt ITI, F-29200 Brest, France
基金
美国国家卫生研究院;
关键词
Multiple-instance learning; Lesion detection; Pathology screening; Diabetic retinopathy; IMAGE RETRIEVAL; RELEVANCE FEEDBACK; DIAGNOSIS; PERFORMANCE; OPHDIAT(C); TRANSFORM; NETWORK; SYSTEMS;
D O I
10.1016/j.media.2012.06.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel multiple-instance learning framework, for automated image classification, is presented in this paper. Given reference images marked by clinicians as relevant or irrelevant, the image classifier is trained to detect patterns, of arbitrary size, that only appear in relevant images. After training, similar patterns are sought in new images in order to classify them as either relevant or irrelevant images. Therefore, no manual segmentations are required. As a consequence, large image datasets are available for training. The proposed framework was applied to diabetic retinopathy screening in 2-D retinal image datasets: Messidor (1200 images) and e-ophtha, a dataset of 25,702 examination records from the Ophdiat screening network (107,799 images). In this application, an image (or an examination record) is relevant if the patient should be referred to an ophthalmologist. Trained on one half of Messidor, the classifier achieved high performance on the other half of Messidor (A(z) = 0.881) and on e-ophtha (A(z) = 0.761). We observed, in a subset of 273 manually segmented images from e-ophtha, that all eight types of diabetic retinopathy lesions are detected. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1228 / 1240
页数:13
相关论文
共 41 条
[1]   Web-based screening for diabetic retinopathy in a primary care population: The EyeCheck project [J].
Abramoff, MD ;
Suttorp-Schulten, MSA .
TELEMEDICINE JOURNAL AND E-HEALTH, 2005, 11 (06) :668-674
[2]   Multiscale AM-FM Methods for Diabetic Retinopathy Lesion Detection [J].
Agurto, Carla ;
Murray, Victor ;
Barriga, Eduardo ;
Murillo, Sergio ;
Pattichis, Marios ;
Davis, Herbert ;
Russell, Stephen ;
Abramoff, Michael ;
Soliz, Peter .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (02) :502-512
[3]  
[Anonymous], 2002, P NEURIPS, DOI DOI 10.5555/2968618.2968690
[4]  
Antal B, 2011, IEEE ENG MED BIO, P5943, DOI 10.1109/IEMBS.2011.6091469
[5]   An Adaptable Image Retrieval System With Relevance Feedback Using Kernel Machines and Selective Sampling [J].
Azimi-Sadjadi, Mahmood R. ;
Salazar, Jaime ;
Srinivasan, Saravanakumar .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (07) :1645-1659
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   AUTOMATED DIAGNOSIS OF RETINOPATHY BY CONTENT-BASED IMAGE RETRIEVAL [J].
Chaum, Edward ;
Karnowski, Thomas P. ;
Govindasamy, V. Priya ;
Abdelrahman, Mohamed ;
Tobin, Kenneth W. .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2008, 28 (10) :1463-1477
[8]  
Chen YX, 2004, J MACH LEARN RES, V5, P913
[9]   Image retrieval: Ideas, influences, and trends of the new age [J].
Datta, Ritendra ;
Joshi, Dhiraj ;
Li, Jia ;
Wang, James Z. .
ACM COMPUTING SURVEYS, 2008, 40 (02)
[10]   OPHDIAT©: Quality-assurance programme plan and performance of the network [J].
Erginay, A. ;
Chabouis, A. ;
Viens-Bitker, C. ;
Robert, N. ;
Lecleire-Collet, A. ;
Massin, P. .
DIABETES & METABOLISM, 2008, 34 (03) :235-242