Effect of Mn, Si, and Cooling Rate on the Formation of Iron-Rich Intermetallics in 206 Al-Cu Cast Alloys

被引:57
作者
Liu, K. [1 ]
Cao, X. [1 ,2 ]
Chen, X. -G. [1 ]
机构
[1] Univ Quebec Chicoutimi, Dept Appl Sci, Chicoutimi, PQ G7H 2B1, Canada
[2] Natl Res Council Canada, Inst Aerosp Res, Aerosp Mfg Technol Ctr, Montreal, PQ H3T 2B2, Canada
来源
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE | 2012年 / 43卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
COPPER B206 ALLOYS; MECHANICAL-PROPERTIES; BETA-AL5FESI PHASE; MICROSTRUCTURE; MANGANESE; IDENTIFICATION; ADDITIONS; BEHAVIOR; SR;
D O I
10.1007/s11663-012-9694-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The solidification structures of commercial 206 Al-Cu cast alloys with 0.15 pct Fe have been studied using thermal analysis (TA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD). The EBSD results have shown that there are two iron-rich intermetallics: Chinese script alpha-Fe and platelet-like beta-Fe. The addition of either Mn or Si has helped to promote the formation of alpha-Fe and hinder the precipitate of beta-Fe. The combined addition of both Mn and Si is even more effective than the individual addition of either Mn or Si. The full solidification sequence of the 206 cast alloy has been established. The volume percent and formation temperature increase for alpha-Fe but decrease for beta-Fe with increasing cooling rate. The platelet beta-Fe can be effectively suppressed in 206 cast alloys by controlling the alloy chemistry and cooling rate. A casting process map is proposed to correlate the Mn and Si contents with cooling rates for the 206 cast alloys.
引用
收藏
页码:1231 / 1240
页数:10
相关论文
共 37 条
  • [1] Aluminum Association, 2009, DES CHEM COMP LIM AL
  • [2] Backerud L., 1986, Solidification Characteristics of Aluminum Alloys, Vol 1-3, 1
  • [3] Effect of cooling rate and Fe/Mn weight ratio on volume fractions of α-AlFeSi and β-AlFeSi phases in Al-7.3Si-3.5Cu alloy
    Belmares-Perales, S.
    Castro-Roman, M.
    Herrera-Trejo, M.
    Ramirez-Vidaurri, L. E.
    [J]. METALS AND MATERIALS INTERNATIONAL, 2008, 14 (03) : 307 - 314
  • [4] Belov N.A., 2002, IRON ALUMINUM ALLOYS
  • [5] Belov NA, 2005, MULTICOMPONENT PHASE DIAGRAMS: APPLICATIONS FOR COMMERCIAL ALUMINUM ALLOYS, pV, DOI 10.1016/B978-008044537-3/50000-7
  • [6] Cao X, 2005, CAN METALL QUART, V44, P435
  • [7] The solidification characteristics of Fe-rich intermetallics in Al-11.5Si-0.4Mg cast alloys
    Cao, X
    Campbell, J
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (05): : 1425 - 1435
  • [8] Morphology of β-Al5FeSi phase in Al-Si cast alloys
    Cao, Xinjin
    Campbell, John
    [J]. MATERIALS TRANSACTIONS, 2006, 47 (05) : 1303 - 1312
  • [9] The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al-Si piston alloys
    Chen, C-L
    Thomson, R. C.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 490 (1-2) : 293 - 300
  • [10] COUTURE A, 1981, INT CAST MET J, V6, P9