Non-Commutative Polynomials with Convex Level Slices

被引:3
作者
Dym, Harry [1 ]
Helton, J. William [2 ]
McCullough, Scott [3 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-7610001 Rehovot, Israel
[2] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
[3] Univ Florida, Dept Math, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
ALGEBRAIC-GEOMETRY; MATRIX CONVEXITY; QUOTIENTS; SIGNATURE;
D O I
10.1512/iumj.2017.66.6219
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the structure of symmetric polynomials p(a, x) in freely noncommuting symmetric variables a = (a(1), ..., a((g) over tilde)) and x = (x(1), ..., x(g)) such that the set of matrix tuples.
引用
收藏
页码:2071 / 2135
页数:65
相关论文
共 14 条
[1]   QUASI-CONVEX FREE POLYNOMIALS [J].
Balasubramanian, S. ;
McCullough, S. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) :2581-2591
[2]   Matrix inequalities: A symbolic procedure to determine convexity automatically [J].
Camino, JF ;
Helton, JW ;
Skelton, RE ;
Ye, JP .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2003, 46 (04) :399-454
[3]  
de Oliveira MC, 2009, IMA VOL MATH APPL, V149, P17
[4]   The Hessian of a noncommutative polynomial has numerous negative eigenvalues [J].
Dym, Harry ;
Helton, J. William ;
McCullough, Scott .
JOURNAL D ANALYSE MATHEMATIQUE, 2007, 102 (1) :29-76
[5]   Irreducible noncommutative defining polynomials for convex sets have degree four or less [J].
Dym, Harry ;
Helton, William ;
McCullough, Scott .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) :1189-1231
[6]   NON-COMMUTATIVE VARIETIES WITH CURVATURE HAVING BOUNDED SIGNATURE [J].
Dym, Harry ;
Helton, J. William ;
McCullough, Scott .
ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) :427-464
[7]   CLASSIFICATION OF ALL NONCOMMUTATIVE POLYNOMIALS WHOSE HESSIAN HAS NEGATIVE SIGNATURE ONE AND A NONCOMMUTATIVE SECOND FUNDAMENTAL FORM [J].
Dym, Harry ;
Greene, J. M. ;
Helton, J. W. ;
McCullough, S. A. .
JOURNAL D ANALYSE MATHEMATIQUE, 2009, 108 :19-59
[8]   Matrix convexity: Operator analogues of the bipolar and Hahn-Banach theorems [J].
Effros, EG ;
Winkler, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 144 (01) :117-152
[9]  
Farenick D, 2012, MATH SCAND, V111, P210
[10]   Non-commutative Partial Matrix Convexity [J].
Hay, Damon M. ;
Helton, J. William ;
Lim, Adrian ;
McCullough, Scott .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) :2815-2842