Potential energy surfaces of mechanically induced reconstruction and doping of carbon sp2 lattice

被引:1
作者
Pomogaev, Vladimir A. [1 ]
Avramov, Pavel V. [2 ,3 ]
机构
[1] Tomsk State Univ, Dept Phys, 6 Lenin Prospekt, Tomsk 634050, Russia
[2] Kyungpook Natl Univ, Dept Chem, 1370 Sankyuk Dong, Daegu 702701, South Korea
[3] Kyungpook Natl Univ, Green Nano Mat Res Ctr, Coll Nat Sci, 1370 Sankyuk Dong, Daegu 702701, South Korea
关键词
Graphene nanoribbon; Breathing deflection; Electronic structure; Doping; GRAPHENE NANORIBBONS; ELECTRONIC-PROPERTIES; SINGLE-LAYER; MULTILAYER GRAPHENE; MAGNETIC-PROPERTIES; TRANSPORT; TRANSISTORS; NANOTUBES; GRAPHITE; GAPS;
D O I
10.1016/j.commatsci.2016.08.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Potential energy surfaces of mechanically-induces structural failure and doping by silicon atom of graphene armchair nanoribbon (14 carbon dimers width, 14-AGNR) are studied by ab initio GGA LC DFT technique in combination with Gaussian-type basis set and periodic boundary conditions. Application of external force to a central atom of a perfect graphene nanoribbon leads to ejection of a carbon dimer or pulling out a polycumulene chain. Different mechanisms of mechanical substitution of carbon dimers by eta(2) coordinated silicon are studied. Migration of silicon adatom on graphene and embedding the atom into the lattice at the vicinity of divacancy induces formation of diamagnetic sp(2)d rectangular planar silicon dopant center. PES of formation of sp(2)d silicon center consists of several relatively low potential energy barriers, making possible a synthesis of novel 2D materials with unique physical properties. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:168 / 175
页数:8
相关论文
共 72 条
[1]   Long-range order in electronic transport through disordered metal films [J].
Aigner, S. ;
Della Pietra, L. ;
Japha, Y. ;
Entin-Wohlman, O. ;
David, T. ;
Salem, R. ;
Folman, R. ;
Schmiedmayer, J. .
SCIENCE, 2008, 319 (5867) :1226-1229
[2]   Ab initio LC-DFT study of graphene, multilayer graphenes and graphite [J].
Avramov, Pavel V. ;
Sakai, Seiji ;
Entani, Shiro ;
Matsumoto, Yoshihiro ;
Naramoto, Hiroshi .
CHEMICAL PHYSICS LETTERS, 2011, 508 (1-3) :86-89
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[5]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   Atomistic simulations of mechanical properties of graphene nanoribbons [J].
Bu, Hao ;
Chen, Yunfei ;
Zou, Min ;
Yi, Hong ;
Bi, Kedong ;
Ni, Zhonghua .
PHYSICS LETTERS A, 2009, 373 (37) :3359-3362
[8]   Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes [J].
Cano-Marquez, Abraham G. ;
Rodriguez-Macias, Fernando J. ;
Campos-Delgado, Jessica ;
Espinosa-Gonzalez, Claudia G. ;
Tristan-Lopez, Ferdinando ;
Ramirez-Gonzalez, Daniel ;
Cullen, David A. ;
Smith, David J. ;
Terrones, Mauricio ;
Vega-Cantu, Yadira I. .
NANO LETTERS, 2009, 9 (04) :1527-1533
[9]   Spin Channels in Functionalized Graphene Nanoribbons [J].
Cantele, Giovanni ;
Lee, Young-Su ;
Ninno, Domenico ;
Marzari, Nicola .
NANO LETTERS, 2009, 9 (10) :3425-3429
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162