Structure and vibrational spectroscopy of lithium and potassium methanesulfonates

被引:7
作者
Parker, Stewart F. [1 ]
Revill-Hivet, Emilie J. [2 ]
Nye, Daniel W. [1 ]
Gutmann, Matthias J. [1 ]
机构
[1] STEC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
[2] Europa Sch UK, Thame Lane, Culham OX14 3DZ, England
来源
ROYAL SOCIETY OPEN SCIENCE | 2020年 / 7卷 / 07期
关键词
methanesulfonate; inelastic neutron scattering spectroscopy; infrared spectroscopy; Raman spectroscopy; density functional perturbation theory;
D O I
10.1098/rsos.200776
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we have determined the structures of lithium methanesulfonate, Li(CH3SO3), and potassium methanesulfonate, K(CH3SO3), and analysed their vibrational spectra. The lithium salt crystallizes in the monoclinic space group C2/m with two formula units in the primitive cell. The potassium salt is more complex, crystallizing in I4/m with 12 formula units in the primitive cell. The lithium ion is fourfold coordinated in a distorted tetrahedron, while the potassium salt exhibits three types of coordination: six-, seven- and ninefold. Vibrational spectroscopy of the compounds (including the Li-6 and Li-7 isotopomers) confirms that the correlation previously found, that in the infrared spectra there is a clear distinction between coordinated and not coordinated forms of the methanesulfonate ion, is also valid here. The lithium salt shows a clear splitting of the asymmetric S-O stretch mode, indicating a bonding interaction, while there is no splitting in the spectrum of the potassium salt, consistent with a purely ionic material.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Vibrational spectroscopy in stem cell characterisation: is there a niche?
    Sule-Suso, J.
    Forsyth, N. R.
    Untereiner, V.
    Sockalingum, G. D.
    TRENDS IN BIOTECHNOLOGY, 2014, 32 (05) : 254 - 262
  • [42] Vibrational Spectroscopy of the Borate Mineral Priceite-Implications for the Molecular Structure
    Frost, Ray L.
    Lopez, Andres
    Scholz, Ricardo
    Xi, Yunfei
    SPECTROSCOPY LETTERS, 2015, 48 (02) : 101 - 106
  • [43] Isotopic Labelling in Vibrational Spectroscopy: A Technique to Decipher the Structure of Surface Species
    Lagunov, Oleg
    Drenchev, Nikola
    Chakarova, Kristina
    Panayotov, Dimitar
    Hadjiivanov, Konstantin
    TOPICS IN CATALYSIS, 2017, 60 (19-20) : 1486 - 1495
  • [44] Structure Analysis of Disease-related Proteins Using Vibrational Spectroscopy
    Hiramatsu, Hirotsugu
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2014, 134 (10): : 1013 - 1020
  • [45] Vibrational spectroscopy of selected natural uranyl vanadates
    Frost, RL
    Cejka, J
    Weier, ML
    Martens, W
    Henry, DA
    VIBRATIONAL SPECTROSCOPY, 2005, 39 (02) : 131 - 138
  • [46] Computational Vibrational Spectroscopy
    Meuwly, Markus
    CHIMIA, 2022, 76 (06) : 589 - 593
  • [47] VIBRATIONAL SPECTROSCOPY OF POLYMERS
    Siesler, Heinz W.
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2011, 16 (08) : 519 - 541
  • [48] VIBRATIONAL SPECTROSCOPY OF FOSSILS
    Marshall, Alison Olcott
    Marshall, Craig P.
    PALAEONTOLOGY, 2015, 58 (02) : 201 - 211
  • [49] Vibrational spectroscopy of flavoproteins
    Iuliano, James N.
    French, Jarrod B.
    Tonge, Peter J.
    NEW APPROACHES FOR FLAVIN CATALYSIS, 2019, 620 : 189 - 214
  • [50] The vibrational structure of dibenzo-p-dioxin.: IR linear dichroism, Raman spectroscopy and quantum chemical calculations
    Eriksen, T. K.
    Hansen, B. K. V.
    Spanget-Larsen, J.
    POLISH JOURNAL OF CHEMISTRY, 2008, 82 (04) : 921 - 934