Structure and vibrational spectroscopy of lithium and potassium methanesulfonates

被引:7
作者
Parker, Stewart F. [1 ]
Revill-Hivet, Emilie J. [2 ]
Nye, Daniel W. [1 ]
Gutmann, Matthias J. [1 ]
机构
[1] STEC Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
[2] Europa Sch UK, Thame Lane, Culham OX14 3DZ, England
来源
ROYAL SOCIETY OPEN SCIENCE | 2020年 / 7卷 / 07期
关键词
methanesulfonate; inelastic neutron scattering spectroscopy; infrared spectroscopy; Raman spectroscopy; density functional perturbation theory;
D O I
10.1098/rsos.200776
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, we have determined the structures of lithium methanesulfonate, Li(CH3SO3), and potassium methanesulfonate, K(CH3SO3), and analysed their vibrational spectra. The lithium salt crystallizes in the monoclinic space group C2/m with two formula units in the primitive cell. The potassium salt is more complex, crystallizing in I4/m with 12 formula units in the primitive cell. The lithium ion is fourfold coordinated in a distorted tetrahedron, while the potassium salt exhibits three types of coordination: six-, seven- and ninefold. Vibrational spectroscopy of the compounds (including the Li-6 and Li-7 isotopomers) confirms that the correlation previously found, that in the infrared spectra there is a clear distinction between coordinated and not coordinated forms of the methanesulfonate ion, is also valid here. The lithium salt shows a clear splitting of the asymmetric S-O stretch mode, indicating a bonding interaction, while there is no splitting in the spectrum of the potassium salt, consistent with a purely ionic material.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Trends in vibrational spectroscopy of fingermarks for forensic purposes
    Amin, Mohamed O.
    Al-Hetlani, Entesar
    Lednev, Igor K.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2021, 143
  • [32] Nonlinear two-dimensional vibrational spectroscopy
    Zhao, W
    Murdoch, KM
    Besemann, DM
    Condon, NJ
    Meyer, KA
    Wright, JC
    APPLIED SPECTROSCOPY, 2000, 54 (07) : 1000 - 1004
  • [33] Vibrational spectroscopy methods in the characterization of nanostructured materials
    Scepanovic, M. J.
    Grujic-Brojcin, M.
    Dohcevic-Mitrovic, Z.
    Popovic, Z. V.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (01): : 30 - 36
  • [34] Vibrational Spectroscopy as a Tool for Bioanalytical and Biomonitoring Studies
    Pirutin, Sergey K.
    Jia, Shunchao
    Yusipovich, Alexander I.
    Shank, Mikhail A.
    Parshina, Evgeniia Yu.
    Rubin, Andrey B.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [35] Whole-Organism Analysis by Vibrational Spectroscopy
    Christensen, Dale
    Ruther, Anja
    Kochan, Kamila
    Perez-Guaita, David
    Wood, Bayden
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 12, 2019, 12 : 89 - 108
  • [36] Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples
    Hackshaw, Kevin, V
    Miller, Joseph S.
    Aykas, Didem P.
    Rodriguez-Saona, Luis
    MOLECULES, 2020, 25 (20):
  • [37] Role of Vibrational Spectroscopy in Stem Cell Research
    Aksoy, Ceren
    Severcan, Feride
    SPECTROSCOPY-AN INTERNATIONAL JOURNAL, 2012, 27 (03): : 167 - 184
  • [38] Vibrational spectroscopy of ion-irradiated ices
    Strazzulla, G
    Baratta, GA
    Palumbo, ME
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2001, 57 (04) : 825 - 842
  • [39] Investigation of different bone matrices by vibrational spectroscopy
    Coman, V.
    Grecu, R.
    Baciut, M.
    Baciut, G.
    Prodan, P.
    Simon, V.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (11): : 3372 - 3375
  • [40] Vibrational Spectroscopy with Neutrons: A Review of New Directions
    Parker, Stewart F.
    Lennon, David
    Albers, Peter W.
    APPLIED SPECTROSCOPY, 2011, 65 (12) : 1325 - 1341