PRFdb: A database of computationally predicted eukaryotic programmed-1 ribosomal frameshift signals

被引:44
|
作者
Belew, Ashton T. [1 ]
Hepler, Nicholas L. [1 ]
Jacobs, Jonathan L. [1 ,2 ]
Dinman, Jonathan D. [1 ]
机构
[1] Univ Maryland, Dept Mol Genet & Cell Biol, College Pk, MD 20854 USA
[2] NICHHD, Lab Mol Growth Regulat, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1186/1471-2164-9-339
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The Programmed Ribosomal Frameshift Database (PRFdb) provides an interface to help researchers identify potential programmed -1 ribosomal frameshift (-1 PRF) signals in eukaryotic genes or sequences of interest. Results: To identify putative -1 PRF signals, sequences are first imported from whole genomes or datasets, e. g. the yeast genome project and mammalian gene collection. They are then filtered through multiple algorithms to identify potential -1 PRF signals as defined by a heptameric slippery site followed by an mRNA pseudoknot. The significance of each candidate -1 PRF signal is evaluated by comparing the predicted thermodynamic stability (Delta G degrees) of the native mRNA sequence against a distribution of Delta G degrees values of a pool of randomized sequences derived from the original. The data have been compiled in a user-friendly, easily searchable relational database. Conclusion: The PRFdB enables members of the research community to determine whether genes that they are investigating contain potential - 1 PRF signals, and can be used as a metasource of information for cross referencing with other databases. It is available on the web at http://dinmanlab.umd.edu/prfdb.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] PRFdb: A database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals
    Ashton T Belew
    Nicholas L Hepler
    Jonathan L Jacobs
    Jonathan D Dinman
    BMC Genomics, 9
  • [2] Identification of putative programmed-1 ribosomal frameshift signals in large DNA databases
    Hammell, AB
    Taylor, RC
    Peltz, SW
    Dinman, JD
    GENOME RESEARCH, 1999, 9 (05) : 417 - 427
  • [3] Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae
    Jacobs, Jonathan L.
    Belew, Ashton T.
    Rakauskaite, Rasa
    Dinman, Jonathan D.
    NUCLEIC ACIDS RESEARCH, 2007, 35 (01) : 165 - 174
  • [4] RiboFrShiftFinder: Prediction of programmed-1 ribosomal frameshift sites
    Yu, W
    Kraemer, ET
    Taylor, EW
    FASEB JOURNAL, 2000, 14 (04): : A328 - A328
  • [5] Characterization of the frameshift signal of Edr, a mammalian example of programmed-1 ribosomal frameshifting
    Manktelow, E
    Shigemoto, K
    Brierley, I
    NUCLEIC ACIDS RESEARCH, 2005, 33 (05) : 1553 - 1563
  • [6] Characterization of the frameshift stimulatory signal controlling a programmed-1 ribosomal frameshift in the human immunodeficiency virus type 1
    Dulude, D
    Baril, M
    Brakier-Gingras, L
    NUCLEIC ACIDS RESEARCH, 2002, 30 (23) : 5094 - 5102
  • [7] A programmed-1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element
    Plant, EP
    Wang, PG
    Jacobs, JL
    Dinman, JD
    NUCLEIC ACIDS RESEARCH, 2004, 32 (02) : 784 - 790
  • [8] A dynamical model of programmed-1 ribosomal frameshifting
    Xie, Ping
    JOURNAL OF THEORETICAL BIOLOGY, 2013, 336 : 119 - 131
  • [9] Efficiency of a programmed-1 ribosomal frameshift in the different subtypes of the human immunodeficiency virus type 1 group M
    Baril, M
    Dulude, D
    Gendron, K
    Lemay, G
    Brakier-Gingras, L
    RNA, 2003, 9 (10) : 1246 - 1253
  • [10] The role of programmed-1 ribosomal frameshifting in coronavirus propagation
    Plant, Ewan P.
    Dinman, Jonathan D.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2008, 13 : 4873 - 4881