Distributed Intelligent System of Network Traffic Anomaly Detection Based on Artificial Immune System

被引:0
作者
Vasilyev, Vladimir [1 ]
Shamsutdinov, Rinat [1 ]
机构
[1] Ufa State Aviat Tech Univ, Ufa, Russia
来源
PROCEEDINGS OF THE 7TH SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGIES FOR INTELLIGENT DECISION MAKING SUPPORT (ITIDS 2019) | 2019年 / 166卷
关键词
information security; network attack; intrusion detection system; artificial immune system; network security;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper analyzes the essence of intrusion detection systems, identifies the relevance of detecting unknown attacks with a low number of False Positives, and identifies the significant parameters of the NSL-KDD dataset network connections. The authors have developed a distributed system for detecting network anomalies, using the mechanisms of an artificial immune system. A series of computational experiments was conducted that demonstrated a high level of efficiency of the developed system and a low percentage of False Positives.
引用
收藏
页码:40 / 45
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 2008, International Journal of computational Intelligence
[2]  
[Anonymous], RBC
[3]  
Branitsky A., 2016, T SPIIRAN, V2, P207, DOI [10.15622/sp.45, DOI 10.15622/SP.45]
[4]  
CISCO, CISCO 2018 ANN CYB R
[5]   Learning and optimization using the clonal selection principle [J].
de Castro, LN ;
Von Zuben, FJ .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (03) :239-251
[6]  
Kornienko A. A., INTRUSION DETECTION
[7]  
Kotov V. D., 2009, MAT DOKL VSER NAUCHN, P371
[8]  
Krasnopevtsev A.A., 2013, BEZOPASNOST INFORM T, V20, P63
[9]  
Meshcheryakov R. V., 2013, TEKHNICHESKIE NAUKI, P57
[10]  
Mukkamala S., MODELING INTRUSION D