Conservation of energy, entropy identity, and local stability for the spatially homogeneous Boltzmann equation

被引:32
作者
Lu, XG [1 ]
机构
[1] Tsing Hua Univ, Dept Appl Math, Beijing 100084, Peoples R China
关键词
Boltzmann equation; conservation of energy; entropy identity; local stability;
D O I
10.1023/A:1004606525200
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For nonsoft potential collision kernels with angular cutoff, we prove that under the initial condition f(0)(v)(1 + \v\(2) + \log f(0)(v)\) epsilon L-1(R-3), the classical formal entropy identity holds for all nonnegative solutions of the spatially homogeneous Boltzmann equation in the class L-infinity([0, infinity); L-2(1)(R-3)) boolean AND C-1([0, infinity); L-1(R-3)) [where L-s(1)(R-3)= {f \ f(v)(1 + \v\(2))(s/2) epsilon L-1 (R-3)}] , this class, the nonincrease of energy always implies the conservation of energy and therefore the solutions obtained all conserve energy. Moreover, for hard potentials and the hard-sphere model, a local stability result for conservative solutions (i.e., satisfying the conservation of mass, momentum, and energy) is obtained. As an application of the local stability, a sufficient and necessary condition on the initial data f(0) such that the conservative solutions f belong to L-loc(1)(0, infinity); L-2 + beta(1)(R-3)) is also given.
引用
收藏
页码:765 / 796
页数:32
相关论文
共 20 条
[11]  
GUSTAFSSON T, 1986, ARCH RATION MECH AN, V92, P23
[12]  
LU XG, IN PRESS SIAM J MATH
[13]  
Lu Xuguang, 1997, Transport Theory and Statistical Physics, V26, P209, DOI 10.1080/00411459708221784
[14]  
MISCHLER S, IN PRESS ANN I H P A
[15]  
MUKHERJEA A, 1984, REAL FUNCTIONAL AN A
[16]   A Maxwellian lower bound for solutions to the Boltzmann equation [J].
Pulvirenti, A ;
Wennberg, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (01) :145-160
[17]  
Truesdell C., 1980, Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas
[18]  
Wennberg B., 1994, Transport Theory and Statistical Physics, V23, P533, DOI 10.1080/00411459408203878
[19]   STABILITY AND EXPONENTIAL CONVERGENCE IN L(P) FOR THE SPATIALLY HOMOGENEOUS BOLTZMANN-EQUATION [J].
WENNBERG, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (08) :935-964
[20]   Entropy dissipation and moment production for the Boltzmann equation [J].
Wennberg, B .
JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (5-6) :1053-1066