Remote sensing analysis to forest changes of the biodiversity hotspots in Southwest China

被引:0
作者
Wei, WX [1 ]
Zhang, T [1 ]
Li, S [1 ]
Wang, DJ [1 ]
Steininger, M [1 ]
机构
[1] Peking Univ, Inst Remote Sensing & GIS, Beijing 100871, Peoples R China
来源
IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings | 2005年
关键词
remote sensing analysis; biodiversity; maximum likelihood classification (MLC); habitat; forest degradations;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Mountains of Southwest China is one of the biology diversity hotspots in the world with more than 12,000 species of higher plants, and the habitat diversity is the foundation of the biodiversity. This study uses maximum likelihood classification (MLC) to compare the Landsat-5 images in 1990 and Landsat-7 images in 2000 in order to obtain the forest and degradation areas by ERDAS software. Taking the giant panda as the flagship species, we analyze the habitats' change including their size, shape and component, and describe the relationship among the three of habitat scale, fragment and time in order to define the habitat effect to animal survival ability. The classification accuracy is up to 84.1%. Most of change areas centralize in Sichuan Province and South Tibet and a few areas in Qinghai, Yunnan and Guizhou Province. Most forest degradations are near the riverside, the roads, the uptowns and other human activity areas. In conclusion, it is an essential strategy by protecting the natural habitat and decreasing the human breakages to restore the nature. Remote sensing technology, in biodiversity study, is an important approach to monitor the forest sight and analyze the changing factors.
引用
收藏
页码:5019 / 5022
页数:4
相关论文
共 50 条
  • [21] Time-lapsing biodiversity: An open source method for measuring diversity changes by remote sensing
    Rocchini, Duccio
    Marcantonio, Matteo
    Da Re, Daniele
    Chirici, Gherardo
    Galluzzi, Marta
    Lenoir, Jonathan
    Ricotta, Carlo
    Torresani, Michele
    Ziv, Guy
    REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [22] Factors Influencing Changes in Forestry Carbon Sinks Under the 'Dual Carbon' Framework in Southwest China: Evidence from Satellite Remote Sensing Data
    Cao, Yang
    Xing, Haoyue
    Wang, Zeen
    SUSTAINABILITY, 2024, 16 (24)
  • [23] Forest bioenergy harvesting changes carbon balance and risks biodiversity in boreal forest landscapes
    Repo, Anna
    Eyvindson, Kyle
    Halme, Panu
    Monkkonen, Mikko
    CANADIAN JOURNAL OF FOREST RESEARCH, 2020, 50 (11) : 1184 - 1193
  • [24] Remote Sensing and Markov Model Analysis on Forest Change in Hun Watershed
    Wang Dianzhong
    Hao Zhanqing
    Han Wenquan
    Sun, Guoqing
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3090 - +
  • [25] Remote Sensing of Geomorphodiversity Linked to Biodiversity-Part III: Traits, Processes and Remote Sensing Characteristics
    Lausch, Angela
    Schaepman, Michael E.
    Skidmore, Andrew K.
    Catana, Eusebiu
    Bannehr, Lutz
    Bastian, Olaf
    Borg, Erik
    Bumberger, Jan
    Dietrich, Peter
    Glaesser, Cornelia
    Hacker, Jorg M.
    Hoefer, Rene
    Jagdhuber, Thomas
    Jany, Sven
    Jung, Andras
    Karnieli, Arnon
    Klenke, Reinhard
    Kirsten, Toralf
    Koedel, Uta
    Kresse, Wolfgang
    Mallast, Ulf
    Montzka, Carsten
    Moeller, Markus
    Mollenhauer, Hannes
    Pause, Marion
    Rahman, Minhaz
    Schrodt, Franziska
    Schmullius, Christiane
    Schuetze, Claudia
    Selsam, Peter
    Syrbe, Ralf-Uwe
    Truckenbrodt, Sina
    Vohland, Michael
    Volk, Martin
    Wellmann, Thilo
    Zacharias, Steffen
    Baatz, Roland
    REMOTE SENSING, 2022, 14 (09)
  • [26] Measuring Forest Biodiversity Status and Changes Globally
    Hill, Samantha L. L.
    Arnell, Andy
    Maney, Calum
    Butchart, Stuart H. M.
    Hilton-Taylor, Craig
    Ciciarelli, Carolyn
    Davis, Crystal
    Dinerstein, Eric
    Purvis, Andy
    Burgess, Neil D.
    FRONTIERS IN FORESTS AND GLOBAL CHANGE, 2019, 2
  • [27] Applications in Remote Sensing to Forest Ecology and Management
    Lechner, Alex M.
    Foody, Giles M.
    Boyd, Doreen S.
    ONE EARTH, 2020, 2 (05): : 405 - 412
  • [28] Understanding Forest Fire Patterns and Risk Assessment to Local Biodiversity of Selected Districts of Mizoram Using GIS and Remote Sensing
    Bhattacharjee S.
    Mukheerjee T.
    Chatterjee D.
    Dar S.A.
    Dutta R.
    Singh H.
    Sharief A.
    Kumar V.
    Joshi B.D.
    Maheswaran G.
    Thakur M.
    Sharma L.K.
    Proceedings of the Zoological Society, 2023, 76 (3) : 251 - 262
  • [29] Double down on remote sensing for biodiversity estimation: a biological mindset
    Rocchini, Duccio
    Torresani, Michele
    Beierkuhnlein, Carl
    Feoli, Enrico
    Foody, Giles M.
    Lenoir, Jonathan
    Malavasi, Marco
    Moudry, Vitezslav
    Simova, Petra
    Ricotta, Carlo
    COMMUNITY ECOLOGY, 2022, 23 (03) : 267 - 276
  • [30] Editorial: Remote sensing advances in biodiversity and ecosystem functioning research
    Li, Zhouyuan
    Wu, Jiaxin
    Peng, Shijia
    Xu, Yanjie
    Sun, Weiwei
    Gao, Jixi
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2024, 12