Elevated [CO2], temperature increase and N supply effects on the accumulation of below-ground carbon in a temperate grassland ecosystem

被引:27
作者
Loiseau, P [1 ]
Soussana, JF [1 ]
机构
[1] INRA Agron, F-63039 Clermont Ferrand 2, France
关键词
climate change; roots; soil organic matter; carbon cycle; Lolium perenne L;
D O I
10.1023/A:1004632925520
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The effects of elevated [CO2] (700 mu l l(-1) [CO2]) and temperature increase (+3 degrees C) on carbon accumulation in a grassland soil were studied at two N-fertiliser supplies (160 and 530 kgN ha(-1) year(-1)) in a long-term experiment (2.5 years) on well established ryegrass swards (Lolium perenne L.,) supplied with the same amounts of irrigation water. For all experimental treatments, the C:N ratio of the top soil organic matter fractions increased with their particle size. Elevated CO2 concentration increased the C:N ratios of the below-ground phytomass and of the macro-organic matter. A supplemental fertiliser N or a 3 degrees C increase in elevated [CO2] reduced it. At the last sampling date, elevated [CO2] did not affect the C:N ratio of the soil organic matter fractions, but increased significantly the accumulation of roots and of macro-organic matter above 200 mu m (MOM). An increased N-fertiliser supply stimulated the accumulation of the non harvested plant phytomass and of the OM between 2 and 50 mu m, without positive effect on the macro-organic matter > 200 mu m. Elevated [CO2] increased C accumulation in the OM fractions above 50 mu m by +2.1 tC ha(-1), on average, whereas increasing the fertiliser N supply led to an average supplemental accumulation of +0.8 tC ha(-1). There was no significant effect of a 3 degrees C temperature increase under elevated [CO2] on C accumulation in the OM fractions above 50 mu m.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 50 条
  • [41] Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought
    Andresen, Louise C.
    Michelsen, Anders
    Jonasson, Sven
    Schmidt, Inger K.
    Mikkelsen, Teis N.
    Ambus, Per
    Beier, Claus
    PLANT AND SOIL, 2010, 328 (1-2) : 381 - 396
  • [42] Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought
    Louise C. Andresen
    Anders Michelsen
    Sven Jonasson
    Inger K. Schmidt
    Teis N. Mikkelsen
    Per Ambus
    Claus Beier
    Plant and Soil, 2010, 328 : 381 - 396
  • [43] The fate of photosynthetically-fixed carbon in Lolium perenne grassland as modified by elevated CO2 and sward management
    Hill, P. W.
    Marshall, C.
    Williams, G. G.
    Blum, H.
    Harmens, H.
    Jones, D. L.
    Farrar, J. F.
    NEW PHYTOLOGIST, 2007, 173 (04) : 766 - 777
  • [44] Accumulation of soil carbon under elevated CO2 unaffected by warming and drought
    Dietzen, Christiana A.
    Larsen, Klaus Steenberg
    Ambus, Per L.
    Michelsen, Anders
    Arndal, Marie Frost
    Beier, Claus
    Reinsch, Sabine
    Schmidt, Inger Kappel
    GLOBAL CHANGE BIOLOGY, 2019, 25 (09) : 2970 - 2977
  • [45] Selective grazing modifies previously anticipated responses of plant community composition to elevated CO2 in a temperate grassland
    Newton, Paul C. D.
    Lieffering, Mark
    Parsons, Anthony J.
    Brock, Shona C.
    Theobald, Phillip W.
    Hunt, Chris L.
    Luo, Dongwen
    Hovenden, Mark J.
    GLOBAL CHANGE BIOLOGY, 2014, 20 (01) : 158 - 169
  • [46] Interactive effects of management and temperature anomalies on CO2 fluxes recorded over 18 years in a temperate upland grassland system
    Winck, Bruna
    Klumpp, Katja
    Bloor, Juliette M. G.
    AGRICULTURAL AND FOREST METEOROLOGY, 2025, 362
  • [47] Elevated CO2 and warming effects on grassland plant mortality are determined by the timing of rainfall
    Hovenden, Mark J.
    Newton, Paul C. D.
    Porter, Meagan
    ANNALS OF BOTANY, 2017, 119 (07) : 1225 - 1233
  • [48] Response of a Sphagnum bog plant community to elevated CO2 and N supply
    Heijmans, MMPD
    Klees, H
    de Visser, W
    Berendse, F
    PLANT ECOLOGY, 2002, 162 (01) : 123 - 134
  • [49] Belowground interactive effects of elevated CO2, plant diversity and earthworms in grassland microcosms
    Milcu, Alexandru
    Paul, Sarah
    Lukac, Martin
    BASIC AND APPLIED ECOLOGY, 2011, 12 (07) : 600 - 608
  • [50] Response of a Sphagnum bog plant community to elevated CO2 and N supply
    Monique M. P. D. Heijmans
    Herman Klees
    Willem de Visser
    Frank Berendse
    Plant Ecology, 2002, 162 : 123 - 134