ON THE REGULARITY OF THE 2+1 DIMENSIONAL EQUIVARIANT SKYRME MODEL

被引:2
|
作者
Geba, Dan-Andrei [1 ]
da Silva, Daniel [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
Skyrme model; global existence; nonconcentration of energy; WAVE MAPS; FIELD THEORY; SIGMA-MODEL; BLOW-UP; SINGULARITIES; POSEDNESS;
D O I
10.1090/S0002-9939-2013-11865-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One of the most interesting open problems concerning the Skyrme model of nuclear physics is the regularity of its solutions. In this article, we study 2 + 1 dimensional equivariant Skyrme maps, for which we prove, using the method of multipliers, that the energy does not concentrate. This is one of the important steps towards a global regularity theory.
引用
收藏
页码:2105 / 2115
页数:11
相关论文
共 50 条
  • [1] Global Regularity for the 2+1 Dimensional Equivariant Einstein-Wave Map System
    Andersson L.
    Gudapati N.
    Szeftel J.
    Annals of PDE, 3 (2)
  • [2] LARGE DATA GLOBAL REGULARITY FOR THE CLASSICAL EQUIVARIANT SKYRME MODEL
    Geba, Dan-Andrei
    Grillakis, Manoussos G.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (11) : 5537 - 5576
  • [3] Sharp Global Regularity for the 2+1-Dimensional Equivariant Faddeev Model
    Geba, Dan-Andrei
    Nakanishi, Kenji
    Zhang, Xiang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (22) : 11549 - 11565
  • [4] LARGE DATA GLOBAL REGULARITY FOR THE 2+1-DIMENSIONAL EQUIVARIANT FADDEEV MODEL
    Geba, Dan-Andrei
    Grillakis, Manoussos G.
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2019, 32 (3-4) : 169 - 210
  • [5] Rotating Skyrmions of the (2+1)-Dimensional Skyrme Gauge Model with a Chern-Simons Term
    Loginov, A. Yu.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2014, 118 (02) : 217 - 226
  • [6] Multisoliton solutions for equivariant wave maps on a 2+1 dimensional wormhole
    Bizon, Piotr
    Jendrej, Jacek
    Maliborski, Maciej
    PHYSICAL REVIEW D, 2025, 111 (02)
  • [7] Formation of singularities for equivariant (2+1)-dimensional wave maps into the 2-sphere
    Bizon, P
    Chmaj, T
    Tabor, Z
    NONLINEARITY, 2001, 14 (05) : 1041 - 1053
  • [8] Skyrme-Maxwell solitons in 2+1 dimensions
    Gladikowski, J
    Piette, BMAG
    Schroers, BJ
    PHYSICAL REVIEW D, 1996, 53 (02): : 844 - 851
  • [9] SOLITON SCATTERING IN THE SKYRME MODEL IN (2+1) DIMENSIONS .1. SOLITON SOLITON CASE
    PEYRARD, M
    PIETTE, B
    ZAKRZEWSKI, WJ
    NONLINEARITY, 1992, 5 (02) : 563 - 583
  • [10] SOLITON SCATTERING IN THE SKYRME MODEL IN (2+1) DIMENSIONS .2. MORE GENERAL SYSTEMS
    PEYRARD, M
    PIETTE, B
    ZAKRZEWSKI, WJ
    NONLINEARITY, 1992, 5 (02) : 585 - 600