RETRACTED: Green synthesis of silver nanoparticles from Gloriosa superba L. leaf extract and their catalytic activity (Retracted article. See vol. 115, pg. 388, 2013)

被引:59
作者
Ashokkumar, S. [1 ]
Ravi, S. [2 ]
Velmurugan, S. [2 ]
机构
[1] Annamalai Univ, Dept Phys, Annamalainagar 608002, Tamil Nadu, India
[2] Annamalai Univ, Dept Engg Phys, Annamalainagar 608002, Tamil Nadu, India
关键词
Nanoparticles; Green synthesis; Gloriosa superba extract; Methylene blue; METHYLENE-BLUE; GOLD NANOPARTICLES; NANOSCALE IRON; RAPID SYNTHESIS; PLANT-EXTRACT; BIOSYNTHESIS; PHOTOLUMINESCENCE; REDUCTION; AG; LUMINESCENCE;
D O I
10.1016/j.saa.2013.06.050
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The present work focuses the use of aqueous extract of Gloriosa superba Linn. (Glory Lily) for producing silver nanoparticles (AgNPs) from silver nitrate aqueous solution. Phytochemical analysis of the extract revealed the presence of alkaloid, amino acids, carbohydrates and proteins in the extract and they serve as effective reducing and capping agents for converting silver nitrate to silver nanoparticles. The nanopartides were characterised by UV (Ultra violet), FT-IR (Fourier Transform Infrared), XRD (X-ray diffraction), TEM (Transmission Electron Microscope) SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-ray), and PL (Photoluminescence) studies. Moreover, the catalytic activity of synthesized AgNPs in the reduction of methylene blue was studied by UV-vis spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by G. superba extract which is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time using UV-vis spectrophotometer. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:388 / 392
页数:5
相关论文
共 55 条
[1]   Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. [J].
Ahmad, A ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
LANGMUIR, 2003, 19 (08) :3550-3553
[2]   Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Mandal, D ;
Senapati, S ;
Khan, MI ;
Kumar, R ;
Sastry, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (41) :12108-12109
[3]   Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique [J].
Alqudami, Abdullah ;
Annapoorni, S. .
PLASMONICS, 2007, 2 (01) :5-13
[4]   Banana peel extract mediated novel route for the synthesis of silver nanoparticles [J].
Bankar, Ashok ;
Joshi, Bhagyashree ;
Kumar, Ameeta Ravi ;
Zinjarde, Smita .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 368 (1-3) :58-63
[5]   Green synthesis of silver nanoparticles using latex of Jatropha curcas [J].
Bar, Harekrishna ;
Bhui, Dipak Kr. ;
Sahoo, Gobinda R. ;
Sarkar, Priyanka ;
De, Sankar R. ;
Misra, Ajay .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 339 (1-3) :134-139
[6]   Continuum generation from single gold nanostructures through near-field mediated intraband transitions [J].
Beversluis, MR ;
Bouhelier, A ;
Novotny, L .
PHYSICAL REVIEW B, 2003, 68 (11)
[7]   Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles [J].
Bharde, Atul A. ;
Parikh, Rasesh Y. ;
Baidakova, Maria ;
Jouen, Samuel ;
Hannoyer, Baetrice ;
Enoki, Toshiaki ;
Prasad, B. L. V. ;
Shouche, Yogesh S. ;
Ogale, Satish ;
Sastry, Murali .
LANGMUIR, 2008, 24 (11) :5787-5794
[8]   PHOTOINDUCED LUMINESCENCE FROM THE NOBLE-METALS AND ITS ENHANCEMENT ON ROUGHENED SURFACES [J].
BOYD, GT ;
YU, ZH ;
SHEN, YR .
PHYSICAL REVIEW B, 1986, 33 (12) :7923-7936
[9]   Quantification of cationic anti-malaria agent methylene blue in different human biological matrices using cation exchange chromatography coupled to tandem mass spectrometry [J].
Burhenne, Juergen ;
Riedel, Klaus-Dieter ;
Rengelshausen, Jens ;
Meissner, Peter ;
Mueller, Olaf ;
Mikus, Gerd ;
Haefeli, Walter E. ;
Walter-Sack, Ingeborg .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2008, 863 (02) :273-282
[10]   Perchlorate reduction by nanoscale iron particles [J].
Cao, JS ;
Elliott, D ;
Zhang, WX .
JOURNAL OF NANOPARTICLE RESEARCH, 2005, 7 (4-5) :499-506