This work presents a formulation for thick plates following Mindlin theory. The fundamental solution takes into account an assumed displacement distribution on the thickness, and was derived by means of Hormander operator and the Radon transform. To compute the inverse Radon transform of the fundamental solution, some numerical integrals need to be computed. How these integrations are carried out is a key point in the performance of the boundary element code. Two approaches to integrate fundamental solutions are discussed. Integral equations are obtained using Betti's reciprocal theorem. Domain integrals are exactly transformed into boundary integrals by the radial integration technique. (c) 2012 Elsevier Ltd. All rights reserved.