Metal matrix composites have evoked a keen interest from the automobile and aerospace sectors owing to their attractive mechanical properties and applications. Over the past two decades, researchers have unearthed many secrets pertaining to these advanced materials. This paper briefly reviews the research revelations of the mechanisms that make these materials so superior. Turning of metal matrix composites is focused in particular. Mechanisms such as particle fracture, particle pullout, debonding, dislocation phenomena, thermal softening, wear modes, surface generation, cutting forces, chip formation, strains and stresses are addressed. Discussions on related phenomena such as effects of tool coatings, adhesion, friction, microstructures and strain hardening are also presented. (C) 2014 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda. All rights reserved.