The Equivalent Theorem for Jackson-type Operators on Spherical Cap

被引:0
作者
Li, Ming [1 ]
Cao, Feilong [1 ]
Chen, Zhixiang [2 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Shaoxing Univ, Dept Math, Shaoxing 312000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Jackson-type operators; spherical cap; approximation; K-functional; modulus of smoothness; INEQUALITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article discusses the approximation on the spherical cap. The Jackson-type operators {J(v,s)(m)}(v=11)(infinity) defined on the spherical cap D(x(0), gamma) are used to approximate the spherical function. An equivalent theorem, which simultaneously contains the direct and inverse inequalities for the approximation, is established by means of the modulus of smoothness on the spherical cap. Namely, for any p-th (1 <= p < infinity) integrable or continuous function f defined on the spherical cap D(x(0), gamma), it is proved that there exist positive constants C-1 and C-2, such that C-1 omega(2) (f, 1/v)(D.p) <=parallel to J(v,s)(m) (f) - f parallel to D,p <= C-2 omega(2) (f, 1/v)(D,p), where omega(2) (f, t)(D,p) is the modulus of smoothness of degree 2 of f on the spherical cap D(x(0), gamma).
引用
收藏
页码:778 / 787
页数:10
相关论文
共 16 条
[1]  
[Anonymous], RESULTS MATH
[2]   Multivariate approximating averages [J].
Belinsky, E ;
Dai, F ;
Ditzian, Z .
JOURNAL OF APPROXIMATION THEORY, 2003, 125 (01) :85-105
[3]  
Berens H., 1968, Publ. Res. Inst. Math. Sci, V4, P201, DOI [DOI 10.2977/PRIMS/1195194875, 10.2977/prims/1195194875]
[4]  
BUTZER PL, 1971, J FUNCT ANAL, V7, P242
[5]  
Cao FL, 2010, MATH COMMUN, V15, P331
[6]   Jackson inequality for banach spaces on the sphere [J].
Dai, F. ;
Ditzian, Z. .
ACTA MATHEMATICA HUNGARICA, 2008, 118 (1-2) :171-195
[7]   Jackson-type inequality for doubling weights on the sphere [J].
Dai, F .
CONSTRUCTIVE APPROXIMATION, 2006, 24 (01) :91-112
[8]   Jackson theorem in Lp, 0 &lt; p &lt; 1, for functions on the sphere [J].
Dai, F. ;
Ditzian, Z. .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :382-391
[9]  
Lizorkin P. L., 1987, MATH NOTES, V41, p[509, 286]
[10]  
Stein E. M., 1971, Fourier analysis on Euclidean spaces, V32