Optimum sparse array configuration for DOA estimation on moving platforms

被引:10
作者
Qin, Guodong [1 ]
Amin, Moeness G. [2 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Villanova Univ, Ctr Adv Commun, Villanova, PA 19085 USA
基金
中国国家自然科学基金;
关键词
Moving sparse array; Environment-dependent sparse arrays; Cramer-Rao bound; Difference coarray; Array optimization; OF-ARRIVAL ESTIMATION; CO-PRIME ARRAYS; COPRIME ARRAY; LOCALIZATION; SUBARRAYS; COHERENT; DESIGN;
D O I
10.1016/j.dsp.2020.102685
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse array motion can efficiently expand the numbers of achievable degrees of freedom (DOFs) and consecutive lags, improving direction-of-arrival (DOA) estimation. Sparse arrays on a moving platform benefit from motion translation that introduces new sensor positions, which collectively with the original positions can increase the number of spatial autocorrelation lags and lead to full array augmentability. This property has been recently used for the case of environment-independent sparse array configurations, such as those defined by nested and co-prime arrays. In this paper, we consider environment-dependent sparse arrays (EDSAs) design using Cramer-Rao bound (CRB) as the metric of optimality for DOA estimation. The CRB is derived for a sparse array on a moving platform, where the number of identifiable uncorrelated sources exceeds the number of sensors. The CRB expression is used to solve for the sparse array configuration by applying the Genetic algorithm. Simulation results are provided to validate the effectiveness of the proposed EDSA design. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 39 条
[1]   Extending coprime sensor arrays to achieve the peak side lobe height of a full uniform linear array [J].
Adhikari, Kaushallya ;
Buck, John R. ;
Wage, Kathleen E. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2014, :1-17
[2]   Multi-Frequency Co-Prime Arrays for High-Resolution Direction-of-Arrival Estimation [J].
BouDaher, Elie ;
Jia, Yong ;
Ahmad, Fauzia ;
Amin, Moeness G. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (14) :3797-3808
[3]  
Gu YJ, 2017, INT CONF ACOUST SPEE, P3181, DOI 10.1109/ICASSP.2017.7952743
[4]   Intelligent evolutionary algorithms for large parameter optimization problems [J].
Ho, SY ;
Shu, LS ;
Chen, JH .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (06) :522-541
[5]   Direction-of-Arrival Estimation in Subarrays-Based Linear Sparse Arrays with Gain/Phase Uncertainties [J].
Liao, Bin ;
Chan, Shing-Chow .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (04) :2268-2280
[6]   DIFFERENCE BASES AND SPARSE SENSOR ARRAYS [J].
LINEBARGER, DA ;
SUDBOROUGH, IH ;
TOLLIS, IG .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :716-721
[7]   Cramer-Rao bounds for coprime and other sparse arrays, which find more sources than sensors [J].
Liu, Chun-Lin ;
Vaidyanathan, P. P. .
DIGITAL SIGNAL PROCESSING, 2017, 61 :43-61
[8]   Super Nested Arrays: Linear Sparse Arrays With Reduced Mutual Coupling-Part I: Fundamentals [J].
Liu, Chun-Lin ;
Vaidyanathan, P. P. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (15) :3997-4012
[9]   Remarks on the Spatial Smoothing Step in Coarray MUSIC [J].
Liu, Chun-Lin ;
Vaidyanathan, P. P. .
IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) :1438-1442
[10]  
Lu KD, 2013, CHIN AUTOM CONGR, P364, DOI 10.1109/CAC.2013.6775760