Caputo-Hadamard Fractional Derivatives of Variable Order

被引:45
作者
Almeida, Ricardo [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math Applicat CIDMA, P-3810193 Aveiro, Portugal
关键词
Caputo fractional derivative; expansion formulas; fractional calculus; Hadamard fractional derivative; variable fractional order; 26A33; 33F05; DIFFERENTIAL-OPERATORS; APPROXIMATIONS;
D O I
10.1080/01630563.2016.1217880
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we present three types of Caputo-Hadamard derivatives of variable fractional order and study the relations between them. An approximation formula for each fractional operator, using integer-order derivatives only, is obtained and an estimation for the error is given. At the end, we compare the exact fractional derivative of a concrete example with some numerical approximations.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 17 条
[1]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[2]   An expansion formula for fractional derivatives of variable order [J].
Atanackovic, Teodor M. ;
Janev, Marko ;
Pilipovic, Stevan ;
Zorica, Dusan .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (10) :1350-1360
[3]   Stirling functions of the second kind in the setting of difference and fractional calculus [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2003, 24 (7-8) :673-711
[4]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[5]  
Dzherbashyan M. M., 1968, IZV ACAD NAUK ARMJAN, V3, P3
[6]   On Caputo modification of the Hadamard fractional derivatives [J].
Gambo, Yusuf Y. ;
Jarad, Fahd ;
Baleanu, Dumitru ;
Abdeljawad, Thabet .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[7]   Caputo-type modification of the Hadamard fractional derivatives [J].
Jarad, Fahd ;
Abdeljawad, Thabet ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[8]   Finite difference/spectral approximations for the time-fractional diffusion equation [J].
Lin, Yumin ;
Xu, Chuanju .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) :1533-1552
[9]   Noether's theorem for fractional variational problems of variable order [J].
Odzijewicz, Tatiana ;
Malinowska, Agnieszka B. ;
Torres, Delfim F. M. .
CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2013, 11 (06) :691-701
[10]   Numerical approximations of fractional derivatives with applications [J].
Pooseh, Shakoor ;
Almeida, Ricardo ;
Torres, Delfim F. M. .
ASIAN JOURNAL OF CONTROL, 2013, 15 (03) :698-712