POS-GROUPS WITH SOME CYCLIC SYLOW SUBGROUPS

被引:0
作者
Shen, R. [1 ]
Shi, W. [2 ]
Shi, J. [3 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Chongqing Univ Arts & Sci, Dept Math, Chongqing 402160, Peoples R China
[3] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
来源
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY | 2013年 / 39卷 / 05期
基金
中国博士后科学基金;
关键词
perfect order subset; POS-group; Frobenius group; FINITE-GROUPS; ELEMENT ORDERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A finite group G is said to be a POS-group if for each x in G the cardinality of the set {y is an element of G vertical bar o(y) = o(x)} is a divisor of the order of G. In this paper we study the structure of POS-groups with some cyclic Sylow subgroups.
引用
收藏
页码:941 / 957
页数:17
相关论文
共 17 条
[1]  
[Anonymous], 1959, THEORY GROUPS
[2]  
Berkovich Y. G., 1968, SIBERIAN MATH J, V9, P963
[3]  
Das A. K., 2009, INT J ALGEBRA, V13, P629
[4]   ON LARGE ZSIGMONDY PRIMES [J].
FEIT, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :29-36
[5]  
Finch C.E., 2003, JP J ALGEBRA NUMBER, V3, P13
[6]  
Finch C. E., 2004, JP J ALGEBRA NUMBER, V4, P413
[7]   A curious connection between Fermat numbers and finite groups [J].
Finch, CE ;
Jones, L .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (06) :517-524
[8]  
Gorenstein D., 1980, FINITE GROUP, V2nd
[9]  
Higman G., 1957, J.London Math. Soc. (2), V32, P335, DOI DOI 10.1112/JLMS/S1-32.3.335
[10]   SOLVABLE-GROUPS WITH A SMALL NUMBER OF PRIME DIVISORS IN THE ELEMENT ORDERS [J].
KELLER, TM .
JOURNAL OF ALGEBRA, 1994, 170 (02) :625-648