Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties

被引:93
|
作者
Sial, Tanveer Ali [1 ,2 ]
Khan, Muhammad Numan [1 ]
Lan, Zhilong [1 ]
Kumbhar, Farhana [4 ]
Ying, Zhao [1 ,3 ]
Zhang, Jianguo [1 ]
Sun, Daquan [5 ]
Li, Xiu [1 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Shaanxi, Peoples R China
[2] Sindh Agr Univ, Dept Soil Sci, Tandojam, Pakistan
[3] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Urumqi 830011, Xinjiang, Peoples R China
[4] Northwest A&F Univ, Coll Agron, Yangling 712100, Shaanxi, Peoples R China
[5] Univ Saskatchewan, Dept Soil Sci, Saskatoon, SK S7N5A8, Canada
基金
中国国家自然科学基金;
关键词
Banana peels; Biochar; Greenhouse gases; Soil biochemical changes; DISSOLVED ORGANIC-MATTER; NITROUS-OXIDE EMISSION; ENZYME-ACTIVITIES; PHOSPHORUS AVAILABILITY; COMMUNITY COMPOSITION; MICROBIAL COMMUNITY; LOESS PLATEAU; WHEAT-STRAW; FOOD WASTE; CARBON;
D O I
10.1016/j.psep.2018.10.030
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The huge quantity of banana peels waste from juice industries and fruit markets every day is indicating a potential bio-resource which is major task for environment safety. It can be converted into useful material instead of being dumped in landfill site, and reduce the environment and economic problems. In this study, we compared the influence of banana peels waste and its biochar on greenhouse gas emissions, soil enzyme activities and chemical properties of soil at 90 days incubation period. There were five treatments of amendments: no amendment (Control), banana peel 1% (P1), banana peel 2% (P2), biochar 1% (B1) and biochar 2% (B2). Results indicated that biochar amendment significantly decreased cumulative nitrous oxide (N2O) emissions (37.1%-54.8%), whereas banana peels amendment did not significantly decrease cumulative N2O emissions (1.3%-5.3%) as compared to control. Biochar application decreased the soil ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) with an increasing rate. Cumulative carbon dioxide (CO2) emissions for B1 and B2 treatments decreased 20.0% and 24.0% in comparison to the banana peel amendment, respectively. Cumulative methane (CH4) emissions were higher in peel waste than biochar amendment. Soil enzyme activities (urease, invertase and alkaline phosphatase) were significantly increased by biochar amendment. In contrast, banana peel amendment increased soil ammonium nitrogen, soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), beta-glucosidase and urease activities. We concluded that banana peels waste conversion to biochar should be an alternate method of disposal since its application resulted in the reduced greenhouse gas emissions and improved the soil biochemical properties. This biochar should be further tested under field conditions to confirm the potential for mitigating of GHG emissions and soil biochemical properties. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:366 / 377
页数:12
相关论文
共 50 条
  • [21] Polyethylene microplastic and biochar interactively affect the global warming potential of soil greenhouse gas emissions
    Li, Xiaona
    Yao, Shi
    Wang, Zhenyu
    Jiang, Xin
    Song, Yang
    Chang, Scott X.
    ENVIRONMENTAL POLLUTION, 2022, 315
  • [22] Effect of biochar origin and soil pH on greenhouse gas emissions from sandy and clay soils
    Wu, Di
    Senbayram, Mehmet
    Zang, Huadong
    Ugurlar, Ferhat
    Aydemir, Salih
    Brueggemann, Nicolas
    Kuzyakov, Yakov
    Bol, Roland
    Blagodatskaya, Evgenia
    APPLIED SOIL ECOLOGY, 2018, 129 : 121 - 127
  • [23] Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review
    Sultan, Haider
    Li, Yusheng
    Ahmed, Waqas
    Yixue, Mu
    Shah, Asad
    Faizan, Mohammad
    Ahmad, Aqeel
    Abbas, Hafiz Muhammad Mazhar
    Nie, Lixiao
    Khan, Mohammad Nauman
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 355
  • [24] Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system
    Tan, Guangcai
    Wang, Hongyuan
    Xu, Nan
    Junaid, Muhammad
    Liu, Hongbin
    Zhai, Limei
    ENVIRONMENTAL TECHNOLOGY, 2021, 42 (01) : 9 - 19
  • [25] Synergistic effects of biochar and plants can reduce greenhouse gas emissions from salt affected soil
    Bhattarai, Dwarika
    Pandit, Shailesh
    Kafle, Rojina
    Nleya, Thandiwe
    Clay, David E.
    Clay, Sharon A.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] The effects of walnut shell and wood feedstock biochar amendments on greenhouse gas emissions from a fertile soil
    Mukome, Fungai N. D.
    Six, Johan
    Parikh, Sanjai J.
    GEODERMA, 2013, 200 : 90 - 98
  • [27] Investigation of greenhouse gas emissions from the soil amended with rice straw biochar
    Gayoung Yoo
    You Jin Kim
    Yong Oon Lee
    Weixin Ding
    KSCE Journal of Civil Engineering, 2016, 20 : 2197 - 2207
  • [28] Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis
    He, Yanghui
    Zhou, Xuhui
    Jiang, Liling
    Li, Ming
    Du, Zhenggang
    Zhou, Guiyao
    Shao, Junjiong
    Wang, Xihua
    Xu, Zhihong
    Bai, Shahla Hosseini
    Wallace, Helen
    Xu, Chengyuan
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2017, 9 (04): : 743 - 755
  • [29] Vermicomposting treatment of vegetable waste and its greenhouse gas emissions
    Yang, Fan
    Li, Guoxue
    Jiang, Tao
    Zhang, Baoli
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (16): : 190 - 196
  • [30] Investigation of greenhouse gas emissions from the soil amended with rice straw biochar
    Yoo, Gayoung
    Kim, You Jin
    Lee, Yong Oon
    Ding, Weixin
    KSCE JOURNAL OF CIVIL ENGINEERING, 2016, 20 (06) : 2197 - 2207