Reconstruction of Pyrolyzed Bacterial Cellulose (PBC)-Based Three-Dimensional Conductive Network for Silicon Lithium Battery Anodes

被引:6
作者
Chang, Yanhong [1 ]
Zhou, Min [1 ,2 ]
Li, Xianglong [2 ]
Zhang, Yunbo [2 ]
Zhi, Linjie [2 ]
机构
[1] Univ Sci & Technol Beijing, Dept Environm Engn, Beijing 100083, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
bacterial cellulose; electrochemistry; lithium; nanoparticles; silicon; GRAPHENE-ENCAPSULATED SI; HIGH-PERFORMANCE ANODES; LARGE-SCALE; NANOPARTICLES; COMPOSITE;
D O I
10.1002/celc.201500204
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon nanostructures and their composites are believed to be very promising anode material candidates for advanced lithium-ion batteries. Yet, anode material systems developed, to date, inevitably require complex and time-consuming synthetic processes, or complicated and expensive instruments, or hazardous chemicals, or electrode fabrication procedures that are incompatible with current slurry-based electrode fabrication techniques. This situation notoriously hinders the practical implementation of silicon in lithium-ion batteries. Herein, a simple, facile, eco-friendly chopping strategy is demonstrated for the construction of silicon nanoparticle impregnated pyrolyzed bacterial cellulose (PBC). The resulting hybrid material exhibits significantly improved lithium storage performance compared with its counterparts; this reflects great potential for the reconstruction of PBC-based three-dimensional conductive networks. This study provides the potential for the simple and efficient construction of electrode materials and systems in a much more viable and sustainable manner.
引用
收藏
页码:1238 / 1242
页数:5
相关论文
共 40 条
[1]  
[Anonymous], 2008, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.200804355
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode [J].
Chang, Jingbo ;
Huang, Xingkang ;
Zhou, Guihua ;
Cui, Shumao ;
Hallac, Peter B. ;
Jiang, Junwei ;
Hurley, Patrick T. ;
Chen, Junhong .
ADVANCED MATERIALS, 2014, 26 (05) :758-764
[5]  
Choi N.-S., 2012, ANGEW CHEM, V124, P10134, DOI [10.1002/ange.201201429, DOI 10.1002/ANGE.201201429]
[6]   Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability [J].
Du, Fei-Hu ;
Li, Bo ;
Fu, Wei ;
Xiong, Yi-Jun ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
ADVANCED MATERIALS, 2014, 26 (35) :6145-6150
[7]   Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon [J].
Ge, Mingyuan ;
Lu, Yunhao ;
Ercius, Peter ;
Rong, Jiepeng ;
Fang, Xin ;
Mecklenburg, Matthew ;
Zhou, Chongwu .
NANO LETTERS, 2014, 14 (01) :261-268
[8]   Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries [J].
Hassan, Fathy M. ;
Chabot, Victor ;
Elsayed, Abdel Rahman ;
Xiao, Xingcheng ;
Chen, Zhongwei .
NANO LETTERS, 2014, 14 (01) :277-283
[9]   Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries [J].
Ji, Junyi ;
Ji, Hengxing ;
Zhang, Li Li ;
Zhao, Xin ;
Bai, Xin ;
Fan, Xiaobin ;
Zhang, Fengbao ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2013, 25 (33) :4673-4677
[10]   Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries [J].
Jung, Dae Soo ;
Hwang, Tae Hoon ;
Park, Seung Bin ;
Choi, Jang Wook .
NANO LETTERS, 2013, 13 (05) :2092-2097