Reconstruction of Pyrolyzed Bacterial Cellulose (PBC)-Based Three-Dimensional Conductive Network for Silicon Lithium Battery Anodes

被引:6
作者
Chang, Yanhong [1 ]
Zhou, Min [1 ,2 ]
Li, Xianglong [2 ]
Zhang, Yunbo [2 ]
Zhi, Linjie [2 ]
机构
[1] Univ Sci & Technol Beijing, Dept Environm Engn, Beijing 100083, Peoples R China
[2] Natl Ctr Nanosci & Technol, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
来源
CHEMELECTROCHEM | 2015年 / 2卷 / 09期
基金
中国国家自然科学基金;
关键词
bacterial cellulose; electrochemistry; lithium; nanoparticles; silicon; GRAPHENE-ENCAPSULATED SI; HIGH-PERFORMANCE ANODES; LARGE-SCALE; NANOPARTICLES; COMPOSITE;
D O I
10.1002/celc.201500204
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon nanostructures and their composites are believed to be very promising anode material candidates for advanced lithium-ion batteries. Yet, anode material systems developed, to date, inevitably require complex and time-consuming synthetic processes, or complicated and expensive instruments, or hazardous chemicals, or electrode fabrication procedures that are incompatible with current slurry-based electrode fabrication techniques. This situation notoriously hinders the practical implementation of silicon in lithium-ion batteries. Herein, a simple, facile, eco-friendly chopping strategy is demonstrated for the construction of silicon nanoparticle impregnated pyrolyzed bacterial cellulose (PBC). The resulting hybrid material exhibits significantly improved lithium storage performance compared with its counterparts; this reflects great potential for the reconstruction of PBC-based three-dimensional conductive networks. This study provides the potential for the simple and efficient construction of electrode materials and systems in a much more viable and sustainable manner.
引用
收藏
页码:1238 / 1242
页数:5
相关论文
共 40 条
  • [1] [Anonymous], 2008, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.200804355
  • [2] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [3] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [4] Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode
    Chang, Jingbo
    Huang, Xingkang
    Zhou, Guihua
    Cui, Shumao
    Hallac, Peter B.
    Jiang, Junwei
    Hurley, Patrick T.
    Chen, Junhong
    [J]. ADVANCED MATERIALS, 2014, 26 (05) : 758 - 764
  • [5] Choi N.-S., 2012, ANGEW CHEM, V124, P10134, DOI [10.1002/ange.201201429, DOI 10.1002/ANGE.201201429]
  • [6] Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability
    Du, Fei-Hu
    Li, Bo
    Fu, Wei
    Xiong, Yi-Jun
    Wang, Kai-Xue
    Chen, Jie-Sheng
    [J]. ADVANCED MATERIALS, 2014, 26 (35) : 6145 - 6150
  • [7] Large-Scale Fabrication, 3D Tomography, and Lithium-Ion Battery Application of Porous Silicon
    Ge, Mingyuan
    Lu, Yunhao
    Ercius, Peter
    Rong, Jiepeng
    Fang, Xin
    Mecklenburg, Matthew
    Zhou, Chongwu
    [J]. NANO LETTERS, 2014, 14 (01) : 261 - 268
  • [8] Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries
    Hassan, Fathy M.
    Chabot, Victor
    Elsayed, Abdel Rahman
    Xiao, Xingcheng
    Chen, Zhongwei
    [J]. NANO LETTERS, 2014, 14 (01) : 277 - 283
  • [9] Graphene-Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion Batteries
    Ji, Junyi
    Ji, Hengxing
    Zhang, Li Li
    Zhao, Xin
    Bai, Xin
    Fan, Xiaobin
    Zhang, Fengbao
    Ruoff, Rodney S.
    [J]. ADVANCED MATERIALS, 2013, 25 (33) : 4673 - 4677
  • [10] Spray Drying Method for Large-Scale and High-Performance Silicon Negative Electrodes in Li-Ion Batteries
    Jung, Dae Soo
    Hwang, Tae Hoon
    Park, Seung Bin
    Choi, Jang Wook
    [J]. NANO LETTERS, 2013, 13 (05) : 2092 - 2097