Parameter Identification in Uncertain Scalar Conservation Laws Discretized with the Discontinuous Stochastic Galerkin Scheme

被引:0
作者
Schlachter, Louisa [1 ]
Totzeck, Claudia [1 ]
机构
[1] TU Kaiserslautern, Fachbereich Math, Erwin Schrodinger Str, D-67663 Kaiserslautern, Germany
关键词
Uncertainty quantification; Polynomial chaos; Stochastic Galerkin; Multielement; Discontinuous Galerkin; Parameter identification; Optimization; FINITE-ELEMENT-METHOD; RUNGE-KUTTA METHODS; POLYNOMIAL CHAOS; HYPERBOLIC SYSTEMS; QUANTIFICATION; STABILITY;
D O I
10.4208/cicp.OA-2019-0221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study an identification problem which estimates the parameters of the underlying random distribution for uncertain scalar conservation laws. The hyperbolic equations are discretized with the so-called discontinuous stochastic Galerkin method, i.e., using a spatial discontinuous Galerkin scheme and a Multielement stochastic Galerkin ansatz in the random space. We assume an uncertain flux or uncertain initial conditions and that a data set of an observed solution is given. The uncertainty is assumed to be uniformly distributed on an unknown interval and we focus on identifying the correct endpoints of this interval. The first-order optimality conditions from the discontinuous stochastic Galerkin discretization are computed on the time-continuous level. Then, we solve the resulting semi-discrete forward and backward schemes with the Runge-Kutta method. To illustrate the feasibility of the approach, we apply the method to a stochastic advection and a stochastic equation of Burgers' type. The results show that the method is able to identify the distribution parameters of the random variable in the uncertain differential equation even if discontinuities are present.
引用
收藏
页码:1585 / 1608
页数:24
相关论文
共 65 条
[1]  
Abgrall R, 2017, HANDB NUM ANAL, V18, P507, DOI 10.1016/bs.hna.2016.11.003
[2]  
ABGRALL R., 2008, TECH REP
[3]   A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems [J].
Abgrall, Remi ;
Congedo, Pietro Marco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 :828-845
[4]   Uncertainty Quantification in Control Problems for Flocking Models [J].
Albi, Giacomo ;
Pareschi, Lorenzo ;
Zanella, Mattia .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[5]   A CLASS OF BASES IN L2 FOR THE SPARSE REPRESENTATION OF INTEGRAL-OPERATORS [J].
ALPERT, BK .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (01) :246-262
[6]  
[Anonymous], 2024, Uncertainty Quantification: Theory, Implementation, and Applications
[7]   Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws [J].
Banda, Mapundi K. ;
Herty, Michael .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 51 (02) :909-930
[8]  
Barth T, 2013, LECT NOTES COMP SCI, V92, P1, DOI 10.1007/978-3-319-00885-1_1
[9]  
Bonnans J.F., 2006, Springer series, DOI [10.1007/978-3-540-35447-5, DOI 10.1007/978-3-540-35447-5]
[10]  
Borzi A, 2010, GAMM-Mitteilungen, V33, P230, DOI [10.1002/gamm.201010017, DOI 10.1002/GAMM.201010017]