Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots

被引:92
作者
Gao, Zhaoli [1 ,2 ]
Zhang, Yong [1 ,3 ,4 ,5 ]
Fu, Yifeng [6 ]
Yuen, Matthew M. F. [2 ]
Liu, Johan [1 ,3 ,4 ,5 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[2] Hong Kong Univ Sci & Technol, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[3] SMIT Ctr, Sch Automat & Mech Engn, Shanghai 200072, Peoples R China
[4] Key State Lab New Displays & Syst Applicat, Shanghai 200072, Peoples R China
[5] Shanghai Univ, Shanghai 200072, Peoples R China
[6] SHT Smart High Tech AB, SE-41296 Gothenburg, Sweden
关键词
HIGH-QUALITY; MONOLAYER GRAPHENE; BILAYER GRAPHENE; CONDUCTIVITY; TRANSPORT; FILM; TEMPERATURE; HYDROGEN; RAMAN;
D O I
10.1016/j.carbon.2013.05.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene of different layer numbers was fabricated using thermal chemical vapor deposition (TCVD), and it was demonstrated as a heat spreader in electronic packaging. Platinum thermal evaluation chips were used to evaluate the thermal performance of the graphene heat spreaders. The temperature of a hot spot driven at a heat flux of up to 430 W cm(-2) was decreased from 121 degrees C to 108 degrees C (Delta T approximate to 13 degrees C) with the insertion of the monolayer graphene heat spreader, compared with the multilayer (n = 6-10) ones' temperature drop of similar to 8 degrees C. Various parameters affecting the thermal performance of graphene heat spreaders were discussed, e.g. layer numbers of graphene, phonon scattering, thermal boundary resistance. We demonstrate the potentials of using a complementary metal oxide semiconductor compatible TCVD process to utilize graphene as a heat spreader for heat dissipation purposes. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:342 / 348
页数:7
相关论文
共 50 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Phononics in low-dimensional materials [J].
Balandin, Alexander A. ;
Nika, Denis L. .
MATERIALS TODAY, 2012, 15 (06) :266-275
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]  
Bar-Cohen A, 2012, J HEAT TRANSFER, V134
[5]   Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites [J].
Chang, Shu-Wei ;
Nair, Arun K. ;
Buehler, Markus J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (24)
[6]   Anisotropic Debye model for the thermal boundary conductance [J].
Chen, Z. ;
Wei, Z. ;
Chen, Y. ;
Dames, C. .
PHYSICAL REVIEW B, 2013, 87 (12)
[7]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/nnano.2008.417, 10.1038/NNANO.2008.417]
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Templated Growth of Covalently Bonded Three-Dimensional Carbon Nanotube Networks Originated from Graphene [J].
Fu, Yifeng ;
Carlberg, Bjorn ;
Lindahl, Niklas ;
Lindvall, Niclas ;
Bielecki, Johan ;
Matic, Aleksandar ;
Song, Yuxin ;
Hu, Zhili ;
Lai, Zonghe ;
Ye, Lilei ;
Sun, Jie ;
Zhang, Yahui ;
Zhang, Yan ;
Liu, Johan .
ADVANCED MATERIALS, 2012, 24 (12) :1576-1581
[10]   A complete carbon-nanotube-based on-chip cooling solution with very high heat dissipation capacity [J].
Fu, Yifeng ;
Nabiollahi, Nabi ;
Wang, Teng ;
Wang, Shun ;
Hu, Zhili ;
Carlberg, Bjorn ;
Zhang, Yan ;
Wang, Xiaojing ;
Liu, Johan .
NANOTECHNOLOGY, 2012, 23 (04)