Riemann problems and exact solutions to a traffic flow model

被引:29
作者
Curro, C. [1 ]
Manganaro, N. [1 ]
机构
[1] Dept Math & Informat, I-98166 Messina, Italy
关键词
LINEAR HYPERBOLIC SYSTEMS; BALANCE LAWS; SHOCK-WAVES; INVARIANTS;
D O I
10.1063/1.4813473
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Within the theoretical framework of differential constraints method a nonhomogeneous model describing traffic flows is considered. Classes of exact solutions to the governing equations under interest are determined. Furthermore, Riemann problems and generalized Riemann problems which model situations of interest for traffic flows are solved. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[2]  
Ben-Artzi M, 2003, Cambridge monographs on applied and computational mathematics, V11, pxvi+349
[3]   Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem [J].
Ben-Artzi, Matania ;
Li, Jiequan .
NUMERISCHE MATHEMATIK, 2007, 106 (03) :369-425
[4]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[5]   Solvers for the high-order Riemann problem for hyperbolic balance laws [J].
Castro, C. E. ;
Toro, E. F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (04) :2481-2513
[6]   THE GENERALIZED RIEMANN PROBLEM FOR FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS I [J].
Chen, Shouxin ;
Huang, Decheng ;
Han, Xiaosen .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) :409-434
[7]   Differential Constraints and Exact Solution to Riemann Problems for a Traffic Flow Model [J].
Curro, C. ;
Fusco, D. ;
Manganaro, N. .
ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) :167-178
[8]   Hodograph transformation and differential constraints for wave solutions to 2 x 2 quasilinear hyperbolic nonhomogeneous systems [J].
Curro, C. ;
Fusco, D. ;
Manganaro, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (19)
[9]   A reduction procedure for generalized Riemann problems with application to nonlinear transmission lines [J].
Curro, C. ;
Fusco, D. ;
Manganaro, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (33)
[10]  
Curro C., ZAMP IN PRESS