Sequence-based abstract interpretation of Prolog

被引:6
|
作者
Le Charlier, B
Rossi, S
Van Hentenryck, P
机构
[1] Univ Namur, Inst Informat, B-5000 Namur, Belgium
[2] Univ Venice, Dipartimento Informat, I-30172 Venice, Italy
[3] Brown Univ, Dept Comp Sci, Providence, RI 02912 USA
关键词
Prolog; static analysis; abstract interpretation;
D O I
10.1017/S1471068402001114
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Abstr. interpretation is a general methodology for systematic development of program analyses. An abstract interpretation framework is centered around a parametrized non-standard semantics that can be instantiated by various domains to approximate different program properties. Many abstract interpretation frameworks and analyses for Prolog have been proposed, which seek to extract information useful for program optimization, Although motivated by practical considerations, notably making Prolog competitive with imperative languages, such frameworks fail to capture some of the control structures of existing implementations of the language. In this paper, we propose a novel framework for the abstract interpretation of Prolog which handles the depth-first search rule and the cut operator. It relies on the notion of substitution sequence to model the result of the execution of a goal. The framework consists of (i) a denotational concrete semantics, (ii) a safe abstraction of the concrete semantics defined in terms of a class of post-fixpoints, and (iii) a generic abstract interpretation algorithm. We show that traditional abstract domains of substitutions may easily be adapted to the new framework, and provide experimental evidence of the effectiveness of our approach. We also show that previous work on determinacy analysis, that was not expressible by existing abstract interpretation frameworks, can be seen as an instance of our framework. The ideas developed in this paper can be applied to other logic languages, notably to constraint logic languages, and the theoretical approach should be of general interest for the analysis of many non-deterministic programming languages.
引用
收藏
页码:25 / 84
页数:60
相关论文
共 50 条
  • [41] GyrA sequence-based typing of Legionella
    Feddersen, A
    Meyer, HGW
    Matthes, P
    Bhakdi, S
    Husmann, M
    MEDICAL MICROBIOLOGY AND IMMUNOLOGY, 2000, 189 (01) : 7 - 11
  • [42] Sequence-based prediction of variants’ effects
    Nicole Rusk
    Nature Methods, 2018, 15 : 571 - 571
  • [43] SEQUENCE-BASED PHYLOGENY IN EUKARYOTIC GENOMES
    FILIPSKI, J
    NATURE, 1988, 334 (6183) : 571 - 572
  • [44] Fungal taxonomy and sequence-based nomenclature
    Lucking, Robert
    Aime, M. Catherine
    Robbertse, Barbara
    Miller, Andrew N.
    Aoki, Takayuki
    Ariyawansa, Hiran A.
    Cardinali, Gianluigi
    Crous, Pedro W.
    Druzhinina, Irina S.
    Geiser, David M.
    Hawksworth, David L.
    Hyde, Kevin D.
    Irinyi, Laszlo
    Jeewon, Rajesh
    Johnston, Peter R.
    Kirk, Paul M.
    Malosso, Elaine
    May, Tom W.
    Meyer, Wieland
    Nilsson, Henrik R.
    Opik, Maarja
    Robert, Vincent
    Stadler, Marc
    Thines, Marco
    Vu, Duong
    Yurkov, Andrey M.
    Zhang, Ning
    Schoch, Conrad L.
    NATURE MICROBIOLOGY, 2021, 6 (05) : 540 - 548
  • [45] Sequence-Based Prediction of Protein Solubility
    Agostini, Federico
    Vendruscolo, Michele
    Tartaglia, Gian Gaetano
    JOURNAL OF MOLECULAR BIOLOGY, 2012, 421 (2-3) : 237 - 241
  • [46] Nucleotide sequence-based multitarget identification
    Vinayagamoorthy, T
    Mulatz, K
    Hodkinson, R
    JOURNAL OF CLINICAL MICROBIOLOGY, 2003, 41 (07) : 3284 - 3292
  • [47] Sequence-based analysis of mutagenized mice
    David R. Beier
    Mammalian Genome, 2000, 11 : 594 - 597
  • [48] Sequence-based prediction of variants' effects
    Rusk, Nicole
    NATURE METHODS, 2018, 15 (07) : 571 - 571
  • [49] Sequence-based prediction of pathological mutations
    Ferrer-Costa, C
    Orozco, M
    de la Cruz, X
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2004, 57 (04) : 811 - 819
  • [50] Fungal taxonomy and sequence-based nomenclature
    Robert Lücking
    M. Catherine Aime
    Barbara Robbertse
    Andrew N. Miller
    Takayuki Aoki
    Hiran A. Ariyawansa
    Gianluigi Cardinali
    Pedro W. Crous
    Irina S. Druzhinina
    David M. Geiser
    David L. Hawksworth
    Kevin D. Hyde
    Laszlo Irinyi
    Rajesh Jeewon
    Peter R. Johnston
    Paul M. Kirk
    Elaine Malosso
    Tom W. May
    Wieland Meyer
    Henrik R. Nilsson
    Maarja Öpik
    Vincent Robert
    Marc Stadler
    Marco Thines
    Duong Vu
    Andrey M. Yurkov
    Ning Zhang
    Conrad L. Schoch
    Nature Microbiology, 2021, 6 : 540 - 548