Pseudo-Harmonic Oscillatory Ring-Shaped Potential in a Relativistic Equation

被引:17
|
作者
Eshghi, M. [1 ]
机构
[1] Imam Hossein Comprehens Univ, Fac Sci, Dept Phys, Tehran, Iran
关键词
KLEIN-GORDON EQUATION; DIRAC-EQUATION; SCHRODINGER-EQUATION; SYMMETRY;
D O I
10.1088/0256-307X/29/11/110304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact solutions of the Dirac equation are studied for the pseudo-harmonic oscillatory ring-shaped potential by using the Laplace transform approach and the Nikiforov-Uvarov (NU) method. The normalized eigenfunctions are expressed in terms of hyper-geometric series and use the NU and Laplace methods to obtain the eigenvalues equations. The obtained result of the eigenvalue equation is compared. At the end, one can find with a simple transformation the lower spinor component of the Dirac equation.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Solution of the Dirac equation for pseudo-harmonic oscillatory ring-shaped potential by the supersymmetric quantum mechanics
    Moghadam, Sahar Arbabi
    Eshghi, Mahdi
    Mehraban, Hossein
    PHYSICA SCRIPTA, 2014, 89 (09)
  • [2] Exactly complete solutions of the Schrodinger equation with a spherically harmonic oscillatory ring-shaped potential
    Zhang, Min-Cang
    Sun, Guo-Hua
    Dong, Shi-Hai
    PHYSICS LETTERS A, 2010, 374 (05) : 704 - 708
  • [3] Solving Dirac Equation with New Ring-Shaped Non-Spherical Harmonic Oscillator Potential
    Hu Xian-Quan
    Luo Guang
    Wu Zhi-Min
    Niu Lian-Bin
    Ma Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (02) : 242 - 246
  • [4] Schrodinger Equation with Hulthen Potential Plus Ring-Shaped Potential
    Agboola, D.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) : 972 - 976
  • [5] Approximate Relativistic Solutions for a New Ring-Shaped Hulthen Potential
    Ikhdair, Sameer M.
    Hamzavi, Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (3-4): : 279 - 290
  • [6] Exact Solutions of Schrodinger Equation with Improved Ring-Shaped Non-Spherical Harmonic Oscillator and Coulomb Potential
    Ikot, Akpan Ndem
    Akpan, Ita O.
    Abbey, T. M.
    Hassanabadi, Hassan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 65 (05) : 569 - 574
  • [7] Bound state solutions of relativistic particles in a new ring-shaped non-harmonic oscillator potential
    Zhang Min-Cang
    Wang Zhen-Bang
    ACTA PHYSICA SINICA, 2007, 56 (07) : 3688 - 3692
  • [8] The relativistic bound states for a new ring-shaped harmonic oscillator
    School of Physics and Material Science, Anhui University, Hefei 230039, China
    不详
    Chin. Phys., 2008, 2 (380-384): : 380 - 384
  • [9] The relativistic bound states for a new ring-shaped harmonic oscillator
    Zhou Yan
    Guo Jian-You
    CHINESE PHYSICS B, 2008, 17 (02) : 380 - 384
  • [10] The relativistic bound states for a new ring-shaped harmonic oscillator
    周燕
    郭建友
    Chinese Physics B, 2008, 17 (02) : 380 - 384