DIFFERENTIABILITY AND BEST LOCAL APPROXIMATION

被引:0
作者
Cuenya, Hector H. [1 ]
Rodriguez, Claudia N. [1 ]
机构
[1] Univ Nacl Rio Cuarto, Dept Matemat, RA-5800 Rio Cuarto, Argentina
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2013年 / 54卷 / 01期
关键词
Best approximation; L-p-norm; local approximant;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give sufficient conditions over the differentiability of a function to assure existence of the best local approximant in L-p-spaces, 0 < p <= infinity. These conditions are weaker than those given in previous papers. For p = 2 we show that, in a certain way, they are also necessary. In addition, we characterize the best local approximant.
引用
收藏
页码:15 / 25
页数:11
相关论文
共 50 条
  • [1] The similarity between the best approximation and the best copositive approximation
    Kamal, A
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (7-8) : 789 - 803
  • [2] On Best Approximation and Best Coapproximation
    Narang, Tulsi Dass
    Gupta, Sahil
    THAI JOURNAL OF MATHEMATICS, 2016, 14 (02): : 505 - 516
  • [3] Extension of the operator of best polynomial approximation in Lp(Ω)
    Cuenya, Hector H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 376 (02) : 565 - 575
  • [4] Best approximation and wrappings
    Bustamante, J.
    Moreno, Samuel G.
    Quesada, J. M.
    Topology Proceedings, Vol 29, No 1, 2005, 2005, 29 (01): : 27 - 48
  • [5] Best Approximation and Fixed Points
    Chandok, Sumit
    Narang, T. D.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2022, 46 (06) : 691 - 704
  • [6] Interpolation and best simultaneous approximation
    Cuenya, Hector H.
    Levis, Fabian E.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (09) : 1577 - 1587
  • [7] Best Approximation in Numerical Radius
    Aksoy, Asuman Gueven
    Lewicki, Grzegorz
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (06) : 593 - 609
  • [8] Best Approximation by Upward Sets
    Soltani, Zeinab
    Goudarzi, Hamid Reza
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2015, 14 (04): : 345 - 353
  • [9] Some best approximation theorems and best proximity point theorems
    S. Sadiq Basha
    Acta Scientiarum Mathematicarum, 2023, 89 : 215 - 226
  • [10] Some best approximation theorems and best proximity point theorems
    Basha, S. Sadiq
    ACTA SCIENTIARUM MATHEMATICARUM, 2023, 89 (1-2): : 215 - 226