Solid acids as catalysts for the conversion of D-xylose, xylan and lignocellulosics into furfural in ionic liquid

被引:66
作者
Zhang, Luxin [1 ]
Yu, Hongbing [1 ]
Wang, Pan [2 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
[2] Beijing Technol & Business Univ, Sch Food & Chem Engn, Beijing 102488, Peoples R China
关键词
Furfural; Solid acids; Ionic liquid; Lignocellulosic biomass; BIOMASS; DEHYDRATION; STRAW; WATER;
D O I
10.1016/j.biortech.2013.03.054
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
With the aim to develop an ecologically viable catalytic pathway for furfural production without the use of inorganic acids, H3PW12O40, Amberlyst-5 and NKC-9 (macroporous styrene-based sulfonic acid resin) were used as catalysts for producing furfural from xylose, xylan and lignocellulosic biomass in [BMIM]Cl under microwave irradiation at atmospheric pressure. A surprisingly high furfural yield of 93.7% from xylan was obtained by H3PW12O40 at 160 C in 10 min. The degradation of furfural affected by single addition of [BMIM]Cl and solid acids was also investigated. The IL could be easily recycled and reused with stable solvent capacity for multiple runs (5x) after the product furfural was extracted with ethyl acetate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:515 / 521
页数:7
相关论文
共 35 条
[1]   Furfural production from xylose plus glucose feedings and simultaneous N2-stripping [J].
Agirrezabal-Telleria, I. ;
Requies, J. ;
Gueemez, M. B. ;
Arias, P. L. .
GREEN CHEMISTRY, 2012, 14 (11) :3132-3140
[2]   Pore size tuning of functionalized SBA-15 catalysts for the selective production of furfural from xylose [J].
Agirrezabal-Telleria, I. ;
Requies, J. ;
Gueemez, M. B. ;
Arias, P. L. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2012, 115 :169-178
[3]   Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen [J].
Agirrezabal-Telleria, I. ;
Larreategui, A. ;
Requies, J. ;
Gueemez, M. B. ;
Arias, P. L. .
BIORESOURCE TECHNOLOGY, 2011, 102 (16) :7478-7485
[4]   KINETIC-STUDIES OF THE REACTIONS OF KETOSES AND ALDOSES IN WATER AT HIGH-TEMPERATURE .3. MECHANISM OF FORMATION OF 2-FURALDEHYDE FROM D-XYLOSE [J].
ANTAL, MJ ;
LEESOMBOON, T ;
MOK, WS ;
RICHARDS, GN .
CARBOHYDRATE RESEARCH, 1991, 217 :71-85
[5]  
Arnold D. R., 2003, Proc. South African Chem. Eng. Congr, P3
[6]   Deactivation of metal catalysts in liquid phase organic reactions [J].
Besson, M ;
Gallezot, P .
CATALYSIS TODAY, 2003, 81 (04) :547-559
[7]   Synthesis of Furfural from Xylose and Xylan [J].
Binder, Joseph B. ;
Blank, Jacqueline J. ;
Cefali, Anthony V. ;
Raines, Ronald T. .
CHEMSUSCHEM, 2010, 3 (11) :1268-1272
[8]   Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts [J].
Chareonlimkun, A. ;
Champreda, V. ;
Shotipruk, A. ;
Laosiripojana, N. .
FUEL, 2010, 89 (10) :2873-2880
[9]   Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition [J].
Chareonlimkun, A. ;
Champreda, V. ;
Shotipruk, A. ;
Laosiripojana, N. .
BIORESOURCE TECHNOLOGY, 2010, 101 (11) :4179-4186
[10]   Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides [J].
Chheda, Juben N. ;
Roman-Leshkov, Yuriy ;
Dumesic, James A. .
GREEN CHEMISTRY, 2007, 9 (04) :342-350