Hyaline and stretchable haptic interfaces based on serpentine-shaped silver nanofiber networks

被引:44
作者
Jiang, Chengming [1 ]
Li, Qikun [1 ]
Fan, Shiwen [1 ]
Guo, Qinglei [2 ]
Bi, Sheng [1 ]
Wang, Xiaohu [1 ]
Cao, Xuewei [3 ]
Liu, Yun [4 ]
Song, Jinhui [1 ]
机构
[1] Dalian Univ Technol, Minist Educ, Key Lab Precis & Nontradit Machining Technol, Dalian 16024, Peoples R China
[2] Univ Illinois, Frederick Seitz Mat Res Lab, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[3] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China
[4] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
中国国家自然科学基金;
关键词
Haptic interfaces; Serpentine structure; Silver networks; Transparent electrode; Electrical skin; NANOWIRE; ELECTRONICS; ASSEMBLIES; ABSORPTION; CONDUCTORS; SENSORS;
D O I
10.1016/j.nanoen.2020.104782
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Skin-like epidermal electronic technologies are making significant marks in the field of human and machine interaction, with critical applications in prosthetics and robotic systems. However, currently existing skin-interface devices can not statisfy both the high transparency and the large stretchability simultaneously, especially for flexible smart screens, curved optical projections, and patient-friendly medical skin-devices. This study presents a hyaline and stretchable haptic interface (HSHI) based on 20 x 20 capacitive sensor array, simultaneously demonstrating both high transparency and large stretchability. The serpentine design of netlike conductive architectures with narrow nanofibers under surface plasmons in the HSHI can maximize light transmittance (>90%), and form the compatibility of structures and functions with the considerable mechanical strain (>50%). Multifunctional HSHI performs the vary great tactile and geometric adaptation from obviously capacitive-effect shifts for interfacing and switching systems on the robotic arm and the screen. The routes for designing and manufacturing the HSHI also provide effective ways for various complex performances and special application outreaching usual methods through integrating serpentine stretchable technologies and the transparent nanowire arrays.
引用
收藏
页数:10
相关论文
共 49 条
[1]   2D transition metal dichalcogenide nanomaterials: advances, opportunities, and challenges in multi-functional polymer nanocomposites [J].
Ahmadi, Mojtaba ;
Zabihi, Omid ;
Jeon, Seokwoo ;
Yoonessi, Mitra ;
Dasari, Aravind ;
Ramakrishna, Seeram ;
Naebe, Minoo .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (03) :845-883
[2]  
[Anonymous], 2019, FRONT MATER, DOI DOI 10.3389/FMATS.2018.00083
[3]  
Cao LY, 2009, NAT MATER, V8, P643, DOI [10.1038/NMAT2477, 10.1038/nmat2477]
[4]   Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxide-layer scavenger for polymer solar cells [J].
Chen, Jianyu ;
Zhou, Weixin ;
Chen, Jun ;
Fan, Yong ;
Zhang, Ziqiang ;
Huang, Zhendong ;
Feng, Xiaomiao ;
Mi, Baoxiu ;
Ma, Yanwen ;
Huang, Wei .
NANO RESEARCH, 2015, 8 (03) :1017-1025
[5]   An Artificial Flexible Visual Memory System Based on an UV-Motivated Memristor [J].
Chen, Shuai ;
Lou, Zheng ;
Chen, Di ;
Shen, Guozhen .
ADVANCED MATERIALS, 2018, 30 (07)
[6]   Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes [J].
Choi, Kwang-Hyuk ;
Nam, Ho-Jun ;
Jeong, Jin-A ;
Cho, Sung-Woo ;
Kim, Han-Ki ;
Kang, Jae-Wook ;
Kim, Do-Geun ;
Cho, Woon-Jo .
APPLIED PHYSICS LETTERS, 2008, 92 (22)
[7]   Tissue-electronics interfaces: from implantable devices to engineered tissues [J].
Feiner, Ron ;
Dvir, Tal .
NATURE REVIEWS MATERIALS, 2018, 3 (01)
[8]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+
[9]   Silicon nanowire radial p-n junction solar cells [J].
Garnett, Erik C. ;
Yang, Peidong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (29) :9224-+
[10]   Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants [J].
Han, Mengdi ;
Wang, Heling ;
Yang, Yiyuan ;
Liang, Cunman ;
Bai, Wubin ;
Yan, Zheng ;
Li, Haibo ;
Xue, Yeguang ;
Wang, Xinlong ;
Akar, Banu ;
Zhao, Hangbo ;
Luan, Haiwen ;
Lim, Jaeman ;
Kandela, Irawati ;
Ameer, Guillermo A. ;
Zhang, Yihui ;
Huang, Yonggang ;
Rogers, John A. .
NATURE ELECTRONICS, 2019, 2 (01) :26-35