CLASSIFICATION FROM COMPRESSIVE REPRESENTATIONS OF DATA.

被引:0
作者
Coppa, Bertrand [1 ]
Heliot, Rodolphe [1 ]
David, Dominique [1 ]
Michel, Olivier [2 ]
机构
[1] CEA LETI, Minatec Campus, Grenoble, France
[2] Univ Grenoble, DIS, GIPSA Lab, F-38041 Grenoble, France
来源
2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2012年
关键词
Random embeddings; Compressive Sensing; Clustering; RESTRICTED ISOMETRY PROPERTY; RANDOM PROJECTIONS; SIGNAL RECOVERY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compressive sensing proposes simple compression of sparse data at the expense of difficult data reconstruction. We focus here on the opportunities in terms of information recovery within the compressed data space, thus avoiding the expensive data reconstruction step. Specifically, we study here how the clustering ability of a dataset is affected by random projections. The proposed result has the advantage to give statistical insights for low dimensions, where traditional results are to no avail. Experiments show that it is possible to achieve high compression rate while preserving clustering abilities, at a low computational cost.
引用
收藏
页码:1454 / 1458
页数:5
相关论文
共 25 条
[1]  
[Anonymous], 2003, P 20 INT C NONM LEAR
[2]  
[Anonymous], 2000, P16 C UNC ART INT
[3]  
Bach FR, 2006, J MACH LEARN RES, V7, P1963
[4]   A Simple Proof of the Restricted Isometry Property for Random Matrices [J].
Baraniuk, Richard ;
Davenport, Mark ;
DeVore, Ronald ;
Wakin, Michael .
CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) :253-263
[5]   Random Projections of Smooth Manifolds [J].
Baraniuk, Richard G. ;
Wakin, Michael B. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (01) :51-77
[6]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[7]  
Bertoni A, 2006, LECT NOTES COMPUT SC, V3931, P31
[8]  
Candes E., 2005, 11 MAGIC RECOVERY SP
[9]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[10]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215