A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Integro-Differential Equations

被引:0
作者
Lu Zuliang [1 ]
Huang Xiao [1 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing 404000, Peoples R China
来源
2011 30TH CHINESE CONTROL CONFERENCE (CCC) | 2011年
关键词
Integro-differential equations; Optimal control problems; Mixed finite element methods; A posteriori error estimates; FINITE-ELEMENT METHODS; APPROXIMATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This goal of this paper is to study a posteriori error estimates of mixed finite element methods for quadratic optimal control problems governed by integro-differential equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is discretized by piecewise constant elements. We derive a posteriori error estimates for the coupled state and control approximation.
引用
收藏
页码:1839 / 1844
页数:6
相关论文
共 11 条
[1]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[2]   Finite element methods for optimal control problems governed by integral equations and integro-differential equations [J].
Brunner, H ;
Yan, NN .
NUMERISCHE MATHEMATIK, 2005, 101 (01) :1-27
[3]   A POSTERIORI ERROR ESTIMATES OF MIXED METHODS FOR PARABOLIC OPTIMAL CONTROL PROBLEMS [J].
Chen, Yanping ;
Liu, Lingli ;
Lu, Zuliang .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (10) :1135-1157
[4]   Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods [J].
Chen, Yanping ;
Lu, Zuliang .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (11) :957-965
[5]   Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem [J].
Chen, Yanping ;
Lu, Zuliang .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (23-24) :1415-1423
[6]   Higher Order Triangular Mixed Finite Element Methods for Semi linear Quadratic Optimal Control Problems [J].
Deng, Kang ;
Chen, Yanping ;
Lu, Zuliang .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (02) :180-196
[7]   APPROXIMATION OF A CLASS OF OPTIMAL CONTROL PROBLEMS WITH ORDER OF CONVERGENCE ESTIMATES [J].
FALK, RS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (01) :28-47
[8]  
GEVECI T, 1979, RAIRO-ANAL NUMER-NUM, V13, P313
[9]   Adaptive finite element approximation for distributed elliptic optimal control problems [J].
Li, R ;
Liu, WB ;
Ma, HP ;
Tang, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (05) :1321-1349
[10]   A priori error analysis of mixed methods for nonlinear quadratic optimal control problems [J].
Lu Z.L. ;
Chen Y.P. ;
Zhang H.W. .
Lobachevskii Journal of Mathematics, 2008, 29 (3) :164-174