Growing of integrable turbulence

被引:5
作者
Agafontsev, D. S. [1 ,2 ]
Zakharov, V. E. [2 ,3 ]
机构
[1] RAS, Shirshov Inst Oceanol, Moscow 117997, Russia
[2] Skolkovo Inst Sci & Technol, Moscow 121205, Russia
[3] Univ Arizona, Dept Math, Tucson, AZ 85720 USA
基金
俄罗斯科学基金会;
关键词
integrable turbulence; pumping; nonlinear Schrodinger equation;
D O I
10.1063/10.0001541
中图分类号
O59 [应用物理学];
学科分类号
摘要
We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear Schrodinger equation using a new method - the "growing of turbulence". We add to the equation a weak controlled pumping term and start adiabatic evolution of turbulence from statistically homogeneous Gaussian noise. After reaching a certain level of average intensity, we switch off the pumping and realize that the "grown up" turbulence is statistically stationary. We measure its Fourier spectrum, the probability density function (PDF) of intensity and the autocorrelation of intensity. Additionally, we show that, being adiabatic, our method produces stationary states of the integrable turbulence for the intermediate moments of pumping as well. Presently, we consider only the turbulence of relatively small level of nonlinearity; however, even this "moderate" turbulence is characterized by enhanced generation of rogue waves.
引用
收藏
页码:786 / 791
页数:6
相关论文
共 22 条
[1]  
Agafontsev D., 2020, ARXIV200303218
[2]   Integrable turbulence generated from modulational instability of cnoidal waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2016, 29 (11) :3551-3578
[3]   Integrable turbulence and formation of rogue waves [J].
Agafontsev, D. S. ;
Zakharov, V. E. .
NONLINEARITY, 2015, 28 (08) :2791-2821
[4]  
Agrawal G., 2001, NONLINEAR FIBER OPTI, V3rd edn
[5]   Breather turbulence versus soliton turbulence: Rogue waves, probability density functions, and spectral features [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Devine, N. .
PHYSICAL REVIEW E, 2016, 94 (02)
[6]  
Bale B. G., 2012, FIBER LASERS, P135
[7]   Soliton Turbulence in Shallow Water Ocean Surface Waves [J].
Costa, Andrea ;
Osborne, Alfred R. ;
Resio, Donald T. ;
Alessio, Silvia ;
Chrivi, Elisabetta ;
Saggese, Enrica ;
Bellomo, Katinka ;
Long, Chuck E. .
PHYSICAL REVIEW LETTERS, 2014, 113 (10)
[8]   Kinetic equation for a dense soliton gas [J].
El, GA ;
Kamchatnov, AM .
PHYSICAL REVIEW LETTERS, 2005, 95 (20)
[9]   Strongly interacting soliton gas and formation of rogue waves [J].
Gelash, A. A. ;
Agafontsev, D. S. .
PHYSICAL REVIEW E, 2018, 98 (04)
[10]   Bound State Soliton Gas Dynamics Underlying the Spontaneous Modulational Instability [J].
Gelash, Andrey ;
Agafontsev, Dmitry ;
Zakharov, Vladimir ;
El, Gennady ;
Randoux, Stephane ;
Suret, Pierre .
PHYSICAL REVIEW LETTERS, 2019, 123 (23)