Machine learning-based inverse design for single-phase high entropy alloys

被引:12
|
作者
Zeng, Yingzhi [1 ]
Man, Mengren [1 ]
Ng, Chee Koon [2 ]
Wuu, Delvin [2 ]
Lee, Jing Jun [2 ]
Wei, Fengxia [2 ]
Wang, Pei [2 ,3 ]
Bai, Kewu [1 ]
Cheh Tan, Dennis Cheng [2 ]
Zhang, Yong-Wei [1 ]
机构
[1] Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632, Singapore
[2] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
[3] Singapore Inst Technol, Engn Cluster, Singapore 519961, Singapore
关键词
SOLID-SOLUTION PHASE; GENETIC ALGORITHM; STABILITY; EXPLORATION; PREDICTION; SELECTION;
D O I
10.1063/5.0109491
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we develop an inverse design framework to search for single-phase high entropy alloys (HEAs) subjected to specified phase targets and constraints. This framework is based on the fast grid search in the composition-temperature space, enabled by a highly accurate and efficient machine learning model trained by a huge amount of data. Using the framework, we search through the entire quaternary, quinary, and senary alloy systems, formed by Al, Co, Cr, Cu, Fe, Mn, Ni, and Ti, to identify three types of HEAs: (1) the single-phase FCC HEA with the highest Al content; (2) the single-phase FCC HEA with lower equilibrium temperatures; and (3) single-phase BCC HEAs with Al as the principal element. For the first time, we reveal that the highest Al content in single-phase FCC HEAs is 0.15 in mole fraction, which is higher than the Al contents in all reported single-phase FCC HEAs. The identified HEAs for the quaternary, quinary, and senary groups are Al0.15Co0.34Cr0.16Ni0.35, Al0.15Co0.35Cr0.1Fe0.05Ni0.35, and Al0.15Co0.36Cr0.06Fe0.06Mn0.01Ni0.36, respectively. All the designed HEAs are verified by the equilibrium calculations with Thermo-Calc software and the TCHEA3 database. We further conduct Scheil-Gulliver calculations and experimental fabrications and characterizations for the designed HEAs, to verify the formation of the targeted phases at non-equilibrium conditions. This work demonstrates a viable approach to design HEAs with specified phase targets and constraints. (C) 2022 Author(s).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys
    Troparevsky, M. Claudia
    Morris, James R.
    Kent, Paul R. C.
    Lupini, Andrew R.
    Stocks, G. Malcolm
    PHYSICAL REVIEW X, 2015, 5 (01):
  • [22] A Novel Approach to Produce Single-Phase High-Entropy Alloys
    P. Chakraborty
    N. K. Sarkar
    B. Vishwanadh
    R. Tewari
    Transactions of the Indian National Academy of Engineering, 2024, 9 (3) : 703 - 708
  • [23] Machine Learning-Based Hardness Prediction of High-Entropy Alloys for Laser Additive Manufacturing
    Wenhan Zhu
    Wenyi Huo
    Shiqi Wang
    Łukasz Kurpaska
    Feng Fang
    Stefanos Papanikolaou
    Hyoung Seop Kim
    Jianqing Jiang
    JOM, 2023, 75 : 5537 - 5548
  • [24] Machine Learning-Based Hardness Prediction of High-Entropy Alloys for Laser Additive Manufacturing
    Zhu, Wenhan
    Huo, Wenyi
    Wang, Shiqi
    Kurpaska, Lukasz
    Fang, Feng
    Papanikolaou, Stefanos
    Kim, Hyoung Seop
    Jiang, Jianqing
    JOM, 2023, 75 (12) : 5537 - 5548
  • [25] Machine Learning-Based Methods for Materials Inverse Design: A Review
    Liu, Yingli
    Cui, Yuting
    Zhou, Haihe
    Lei, Sheng
    Yuan, Haibin
    Shen, Tao
    Yin, Jiancheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (02): : 1463 - 1492
  • [26] Inverse machine learning-based fragrance tuned design method
    Wang L.
    Mao H.
    Zhang L.
    Liu L.
    Du J.
    Huagong Xuebao/CIESC Journal, 2019, 70 (12): : 4722 - 4729
  • [27] Ensemble-based machine learning models for phase prediction in high entropy alloys
    Mishra, Aayesha
    Kompella, Lakshminarayana
    Sanagavarapu, Lalit Mohan
    Varam, Sreedevi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [28] Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases
    Onate, Angelo
    Sanhueza, Juan Pablo
    Zegpi, Diabb
    Tuninetti, Victor
    Ramirez, Jesus
    Medina, Carlos
    Melendrez, Manuel
    Rojas, David
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 962
  • [29] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [30] Explainable Machine Learning based approach for the design of new refractory high entropy alloys
    Swateelagna, Saswati
    Singh, Manish
    Rahul, M. R.
    INTERMETALLICS, 2024, 167