Machine learning-based inverse design for single-phase high entropy alloys

被引:12
|
作者
Zeng, Yingzhi [1 ]
Man, Mengren [1 ]
Ng, Chee Koon [2 ]
Wuu, Delvin [2 ]
Lee, Jing Jun [2 ]
Wei, Fengxia [2 ]
Wang, Pei [2 ,3 ]
Bai, Kewu [1 ]
Cheh Tan, Dennis Cheng [2 ]
Zhang, Yong-Wei [1 ]
机构
[1] Agcy Sci Technol & Res, Inst High Performance Comp, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632, Singapore
[2] Agcy Sci Technol & Res, Inst Mat Res & Engn, 2 Fusionopolis Way,08-03 Innovis, Singapore 138634, Singapore
[3] Singapore Inst Technol, Engn Cluster, Singapore 519961, Singapore
关键词
SOLID-SOLUTION PHASE; GENETIC ALGORITHM; STABILITY; EXPLORATION; PREDICTION; SELECTION;
D O I
10.1063/5.0109491
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, we develop an inverse design framework to search for single-phase high entropy alloys (HEAs) subjected to specified phase targets and constraints. This framework is based on the fast grid search in the composition-temperature space, enabled by a highly accurate and efficient machine learning model trained by a huge amount of data. Using the framework, we search through the entire quaternary, quinary, and senary alloy systems, formed by Al, Co, Cr, Cu, Fe, Mn, Ni, and Ti, to identify three types of HEAs: (1) the single-phase FCC HEA with the highest Al content; (2) the single-phase FCC HEA with lower equilibrium temperatures; and (3) single-phase BCC HEAs with Al as the principal element. For the first time, we reveal that the highest Al content in single-phase FCC HEAs is 0.15 in mole fraction, which is higher than the Al contents in all reported single-phase FCC HEAs. The identified HEAs for the quaternary, quinary, and senary groups are Al0.15Co0.34Cr0.16Ni0.35, Al0.15Co0.35Cr0.1Fe0.05Ni0.35, and Al0.15Co0.36Cr0.06Fe0.06Mn0.01Ni0.36, respectively. All the designed HEAs are verified by the equilibrium calculations with Thermo-Calc software and the TCHEA3 database. We further conduct Scheil-Gulliver calculations and experimental fabrications and characterizations for the designed HEAs, to verify the formation of the targeted phases at non-equilibrium conditions. This work demonstrates a viable approach to design HEAs with specified phase targets and constraints. (C) 2022 Author(s).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Overview: recent studies of machine learning in phase prediction of high entropy alloys
    Yan, Yong-Gang
    Lu, Dan
    Wang, Kun
    TUNGSTEN, 2023, 5 (01) : 32 - 49
  • [22] Machine Learning-Based Methods for Materials Inverse Design: A Review
    Liu, Yingli
    Cui, Yuting
    Zhou, Haihe
    Lei, Sheng
    Yuan, Haibin
    Shen, Tao
    Yin, Jiancheng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (02): : 1463 - 1492
  • [23] Ensemble-based machine learning models for phase prediction in high entropy alloys
    Mishra, Aayesha
    Kompella, Lakshminarayana
    Sanagavarapu, Lalit Mohan
    Varam, Sreedevi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [24] Supervised machine learning-based multi-class phase prediction in high-entropy alloys using robust databases
    Onate, Angelo
    Sanhueza, Juan Pablo
    Zegpi, Diabb
    Tuninetti, Victor
    Ramirez, Jesus
    Medina, Carlos
    Melendrez, Manuel
    Rojas, David
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 962
  • [25] Phase Prediction in High Entropy Alloys by Various Machine Learning Modules Using Thermodynamic and Configurational Parameters
    Mandal, Pritam
    Choudhury, Amitava
    Mallick, Amitava Basu
    Ghosh, Manojit
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (01) : 38 - 52
  • [26] A comprehensive strategy for phase detection of high entropy alloys: Machine learning and deep learning approaches
    Nazir, Talha
    Shaukat, Nadeem
    Tariq, Naeem ul Haq
    Shahid, Rub Nawaz
    Bhatti, Matloob Hussain
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [27] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [28] Single-phase lightweight high-entropy alloys with enhanced mechanical properties
    Jeong, Il-Seok
    Lee, Joo-Hyoung
    MATERIALS & DESIGN, 2023, 227
  • [29] Formation and Superconductivity of Single-Phase High-Entropy Alloys with a Tetragonal Structure
    Liu, Bin
    Wu, JiFeng
    Cui, Yanwei
    Zhu, Qinqing
    Xiao, Guorui
    Wang, Hangdong
    Wu, Siqi
    Cao, Guanghan
    Ren, Zhi
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (04) : 1130 - 1137
  • [30] Tuning Elinvar effect in severely distorted single-phase high entropy alloys
    Wang, H.
    He, Q. F.
    Wang, A. D.
    Yang, Y.
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (05)