Gain-Scheduled Nash Games with H∞ Constraint for Stochastic LPV Systems

被引:3
|
作者
Mukaidani, Hiroaki [1 ]
Unno, Masaru [2 ]
Xu, Hua [3 ]
Dragan, Vasile [4 ]
机构
[1] Hiroshima Univ, 1-7-1 Kagamiyama, Higashihiroshima 7398521, Japan
[2] NTT Finance Corp, Minato Ku, 1-2-1 Seavans N 19th Floor, Tokyo 1056791, Japan
[3] Univ Tsukuba, Bunkyo Ku, 3-29-1 Otsuka, Tokyo 1120012, Japan
[4] Romanian Acad, Inst Math, POB 1-764, RO-014700 Bucharest, Romania
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Stochastic systems; LPV systems; Nash games; H-infinity constraint; H-2/H-INFINITY CONTROL;
D O I
10.1016/j.ifacol.2017.08.294
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, gain-scheduled Nash games with H-infinity constraint for stochastic linear parameter varying (LPV) systems is investigated. First, as preliminaries, the modified stochastic bounded real lemma and linear quadratic control (LQC) for the LPV systems are studied. The results are then applied to solve the gain-scheduled Nash games with H-infinity constraint for stochastic LPV systems. It is shown that the Nash equilibrium with H-infinity constraint can be obtained by solving the cross-coupled matrix inequalities (CCMIs). A numerical algorithm for solving the CCMIs is developed, and it is applied to solve a numerical example. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1478 / 1483
页数:6
相关论文
共 39 条
  • [31] Nash games for weakly-coupled large-scale Markovian jump stochastic systems
    Sagara M.
    Mukaidani H.
    IEEJ Transactions on Electronics, Information and Systems, 2011, 131 (03) : 644 - 654
  • [32] H∞ Constrained Pareto Suboptimal Strategy for Stochastic LPV Time-Delay Systems
    Mukaidani, Hiroaki
    Xu, Hua
    Zhuang, Weihua
    INTERNATIONAL GAME THEORY REVIEW, 2022, 24 (01)
  • [33] Gain-scheduled control for discrete-time non-linear parameter-varying systems with time-varying delays
    Peixoto, Marcia L. C.
    Braga, Marcio F.
    Palhares, Reinaldo M.
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (19): : 3217 - 3229
  • [34] Pareto optimal strategy for linear stochastic systems with H∞ constraint in finite horizon
    Jiang, Xiushan
    Tian, Senping
    Zhang, Tianliang
    Zhang, Weihai
    INFORMATION SCIENCES, 2020, 512 (512) : 1103 - 1117
  • [35] Simultaneous design of robust gain-scheduled static output-feedback controller and scaling matrices for linear parameter varying systems with inexact scheduling parameters
    Niu, Xingjie
    Lu, Bei
    Li, Qifu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (01) : 728 - 748
  • [36] Pareto-Optimal Strategy for Linear Mean-Field Stochastic Systems With H∞ Constraint
    Jiang, Xiushan
    Tian, Senping
    Zhang, Weihai
    Zhao, Dongya
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (05) : 2846 - 2859
  • [37] Team-optimal Incentive Stackelberg Strategies for Markov Jump Linear Stochastic Systems with H∞ Constraint
    Mukaidani, Hiroaki
    Shima, Tadashi
    Unno, Masaru
    Xu, Hua
    Dragan, Vasile
    IFAC PAPERSONLINE, 2017, 50 (01): : 3780 - 3785
  • [38] H∞ Gain-Scheduling Control for 2-D Stochastic Nonlinear Systems: The F-M Case
    Luo Yuqiang
    Wang Zidong
    Hu Jun
    Wei Guoliang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 1764 - 1769
  • [39] Mixed $H_{2}/H_{\infty}$ Control With Event-Triggered Mechanism for Nonlinear Stochastic Systems With Closed-Loop Stackelberg Games
    Ming, Zhongyang
    Zhang, Huaguang
    Zhang, Juan
    Luo, Yanhong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10): : 6365 - 6374