Green H2O2 activation of electrospun polyimide-based carbon nanofibers towards high-performance free-standing electrodes for supercapacitors

被引:27
作者
Yan, Bing [1 ]
Zheng, Jiaojiao [1 ]
Feng, Li [1 ]
Zhang, Qian [2 ]
Han, Jingquan [1 ]
Hou, Haoqing [3 ]
Zhang, Chunmei [4 ]
Ding, Yichun [5 ]
Jiang, Shaohua [1 ]
He, Shuijian [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Int Innovat Ctr Forest Chem & Mat, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Coll Sci, Nanjing 210037, Peoples R China
[3] Jiangxi Normal Univ, Coll Chem & Chem Engn, Nanchang 330022, Peoples R China
[4] Suzhou Univ Sci & Technol, Inst Mat Sci & Devices, Sch Mat Sci & Engn, Suzhou, Peoples R China
[5] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fuzhou 350010, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon nanofiber membrane; Hierarchical porous structure; O doping; Supercapacitor; H2O2; activation; N/O doping; GRAPHENE OXIDE; NITROGEN; CAPACITANCE; FRAMEWORKS; NANOSHEETS; OXYGEN;
D O I
10.1016/j.diamond.2022.109465
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Free-standing carbon nanofibrous membranes are prepared by carbonization and H2O2 activation of electrospun polyimide nanofibrous membranes. The green and facile H2O2 activation method not only regulates the pore structure of carbon nanofibers but also introduces rich oxygen species, rendering a hierarchically porous and heteroatom-doped carbon electrode for supercapacitors. The optimal electrode (PI800-8) shows a high specific capacitance of 339.9 F g-1 (0.5 A g-1, 6 M KOH electrolyte) and excellent cycle durability with a capacitance retention of 98.4 % after 50,000 cycles (5 A g-1). Particularly, a non-aqueous symmetric supercapacitor assembled with 1 M Et4NBF4 electrolyte shows a high operating voltage of 2.8 V, and delivers the maximum energy/power density of 37.3 Wh kg-1 and 28.0 kW kg-1, respectively. The H2O2 activation method provides a green, efficient, and versatile strategy to improve the pore properties and chemical compositions of porous carbon materials towards energy applications.
引用
收藏
页数:12
相关论文
共 72 条
[1]  
Ahsan M.B.F., 2022, INT J ENERG RES, P1
[2]   Oxygen-Rich Porous Activated Carbon from Eucalyptus Wood as an Efficient Supercapacitor Electrode [J].
Atika ;
Dutta, Raj Kumar .
ENERGY TECHNOLOGY, 2021, 9 (09)
[3]   Investigations on the nature of electrolyte on the electrochemical supercapacitor performance of heteroatom doped graphene [J].
Balaji, S. Suresh ;
Raj, A. G. Karthick ;
Karnan, M. ;
Sathish, M. .
IONICS, 2020, 26 (04) :2081-2094
[4]   Outstanding supercapacitor performance of nitrogen-doped activated carbon derived from shaddock peel [J].
Chen, Jialian ;
Lin, Yuting ;
Liu, Jinling ;
Wu, Dandan ;
Bai, Xin ;
Chen, Denglong ;
Li, Hongzhou .
JOURNAL OF ENERGY STORAGE, 2021, 39
[5]   Economical preparation of high-performance activated carbon fiber papers as self-supporting supercapacitor electrodes [J].
Chen, Junjun ;
Xie, Junxian ;
Jia, Charles Q. ;
Song, Chenying ;
Hu, Jian ;
Li, Hailong .
CHEMICAL ENGINEERING JOURNAL, 2022, 450
[6]   Carbon-based supercapacitors for efficient energy storage [J].
Chen, Xuli ;
Paul, Rajib ;
Dai, Liming .
NATIONAL SCIENCE REVIEW, 2017, 4 (03) :453-489
[7]   Solvent-Free Chemical Approach to Synthesize Co Nanoparticles Supported on N-doped Porous Carbon for Efficient Electrocatalytic Oxygen Reduction [J].
Chen, Zixi ;
Li, Yizhao ;
Liu, Baolin ;
Wang, Kun ;
Cao, Yali .
CHEMCATCHEM, 2020, 12 (09) :2580-2588
[8]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI [10.1126/science.1132195, 10.1126/science/1132195]
[9]   Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory [J].
Chmiola, John ;
Largeot, Celine ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (18) :3392-3395
[10]   An Ultra-microporous Carbon Material Boosting Integrated Capacitance for Cellulose-Based Supercapacitors [J].
Ding, Chenfeng ;
Liu, Tianyi ;
Yan, Xiaodong ;
Huang, Lingbo ;
Ryu, Seungkon ;
Lan, Jinle ;
Yu, Yunhua ;
Zhong, Wei-Hong ;
Yang, Xiaoping .
NANO-MICRO LETTERS, 2020, 12 (01)