Determination of the arm orientation for brain-machine interface prosthetics

被引:0
|
作者
Clanton, S [1 ]
Laws, J [1 ]
Matsuoka, Y [1 ]
机构
[1] Univ Pittsburgh, CMU, Sch Med, Inst Robot, Pittsburgh, PA 15213 USA
来源
2005 IEEE International Workshop on Robot and Human Interactive Communication (RO-MAN) | 2005年
关键词
neuroprosthetics; kinematics; brain-machine interface; biomechanics;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Controlling prosthetics with brain-machine interface will soon become the most natural way to restore limb function to those who suffer from neurodegenerative disease or injury. Here, we first discuss the development of neural signal processing systems for brain-machine interfaces which provide control within the Cartesian (extrinsic) frames of motion. Then we justify the development of systems that provide control using the kinematic (intrinsic) frames of motion of the manipulator prosthetic device. An experiment to create a general model of natural arm motion is presented, along with its application to brain-machine interfaces.
引用
收藏
页码:422 / 426
页数:5
相关论文
共 50 条
  • [41] Web Search via an Efficient and Effective Brain-Machine Interface
    Chen, Xuesong
    Ye, Ziyi
    Xie, Xiaohui
    Liu, Yiqun
    Gao, Xiaorong
    Su, Weihang
    Zhu, Shuqi
    Sun, Yike
    Zhang, Min
    Ma, Shaoping
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1569 - 1572
  • [42] Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping
    John E. Downey
    Jeffrey M. Weiss
    Katharina Muelling
    Arun Venkatraman
    Jean-Sebastien Valois
    Martial Hebert
    J. Andrew Bagnell
    Andrew B. Schwartz
    Jennifer L. Collinger
    Journal of NeuroEngineering and Rehabilitation, 13
  • [43] Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping
    Downey, John E.
    Weiss, Jeffrey M.
    Muelling, Katharina
    Venkatraman, Arun
    Valois, Jean-Sebastien
    Hebert, Martial
    Bagnell, J. Andrew
    Schwartz, Andrew B.
    Collinger, Jennifer L.
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2016, 13
  • [44] Brain-Machine Interfaces: Basis and Advances
    Becedas, Jonathan
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2012, 42 (06): : 825 - 836
  • [45] A Wireless Universal Brain-Machine Interface (BMI) System for Epileptic Diseases
    Qin, Kefan
    Ma, Wei
    Hu, Changzheng
    Shuai, Guobin
    Hu, Weibo
    2022 5TH INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS AND SIMULATION (ICCSS 2022), 2022, : 156 - 160
  • [46] Paper-Based Electronics for Brain-Machine Interface Home Supercomputer
    Lori, Nicolas
    Pais-Vieira, Miguel
    Curado, Manuel
    Machado, Jose
    INTELLIGENT HUMAN SYSTEMS INTEGRATION 2021, 2021, 1322 : 454 - 459
  • [47] Forward Prediction in the Posterior Parietal Cortex and Dynamic Brain-Machine Interface
    Cui, He
    FRONTIERS IN INTEGRATIVE NEUROSCIENCE, 2016, 10
  • [48] The impact of task context on predicting finger movements in a brain-machine interface
    Mender, Matthew J.
    Nason-Tomaszewski, Samuel R.
    Temmar, Hisham
    Costello, Joseph T.
    Wallace, Dylan M.
    Willsey, Matthew S.
    Kumar, Nishant Ganesh
    Kung, Theodore A.
    Patil, Parag
    Chestek, Cynthia A.
    ELIFE, 2023, 12
  • [49] Online Estimating Pairwise Neuronal Functional Connectivity in Brain-Machine Interface
    Chen, Shuhang
    Zhang, Xiang
    Shen, Xiang
    Huang, Yifan
    Wang, Yiwen
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 271 - 281
  • [50] From thought to action: The brain-machine interface in posterior parietal cortex
    Andersen, Richard A.
    Aflalo, Tyson
    Kellis, Spencer
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (52) : 26274 - 26279