Determination of the arm orientation for brain-machine interface prosthetics

被引:0
|
作者
Clanton, S [1 ]
Laws, J [1 ]
Matsuoka, Y [1 ]
机构
[1] Univ Pittsburgh, CMU, Sch Med, Inst Robot, Pittsburgh, PA 15213 USA
来源
2005 IEEE International Workshop on Robot and Human Interactive Communication (RO-MAN) | 2005年
关键词
neuroprosthetics; kinematics; brain-machine interface; biomechanics;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Controlling prosthetics with brain-machine interface will soon become the most natural way to restore limb function to those who suffer from neurodegenerative disease or injury. Here, we first discuss the development of neural signal processing systems for brain-machine interfaces which provide control within the Cartesian (extrinsic) frames of motion. Then we justify the development of systems that provide control using the kinematic (intrinsic) frames of motion of the manipulator prosthetic device. An experiment to create a general model of natural arm motion is presented, along with its application to brain-machine interfaces.
引用
收藏
页码:422 / 426
页数:5
相关论文
共 50 条
  • [21] An Examination of Prospective Uses and Future Directions of Neuralink: The Brain-Machine Interface
    Fiani, Brian
    Reardon, Taylor
    Ayres, Benjamin
    Cline, David
    Sitto, Sarah R.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (03)
  • [22] Towards a versatile brain-machine interface: Neural decoding of multiple behavioral variables and delivering sensory feedback Versatile brain-machine interface
    Lebedev, Mikhail A.
    2018 6TH INTERNATIONAL CONFERENCE ON BRAIN-COMPUTER INTERFACE (BCI), 2018, : 73 - 74
  • [23] Neural control of finger movement via intracortical brain-machine interface
    Irwin, Z. T.
    Schroeder, K. E.
    Vu, P. P.
    Bullard, A. J.
    Tat, D. M.
    Nu, C. S.
    Vaskov, A.
    Nason, S. R.
    Thompson, D. E.
    Bentley, J. N.
    Patil, P. G.
    Chestek, C. A.
    JOURNAL OF NEURAL ENGINEERING, 2017, 14 (06)
  • [24] Implementing Brain-Machine Interface (BMI) with Smart Computing
    Verma, Animesh
    Tripathi, Amrendra
    Choudhury, Tanupriya
    COMPUTATIONAL INTELLIGENCE IN PATTERN RECOGNITION, CIPR 2020, 2020, 1120 : 71 - 81
  • [25] An electrocorticographic decoder for arm movement for brain-machine interface using an echo state network and Gaussian readout
    Kim, Hoon-Hee
    Jeong, Jaeseung
    APPLIED SOFT COMPUTING, 2022, 117
  • [26] Adaptive Classification for Brain-Machine Interface with Reinforcement Learning
    Matsuzaki, Shuichi
    Shiina, Yusuke
    Wada, Yasuhiro
    NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 360 - 369
  • [27] Development of an invasive brain-machine interface with a monkey model
    Zhang QiaoSheng
    Zhang ShaoMin
    Hao YaoYao
    Zhang HuaiJian
    Zhu JunMing
    Zhao Ting
    Zhang JianMin
    Wang YiWen
    Zheng XiaoXiang
    Chen WeiDong
    CHINESE SCIENCE BULLETIN, 2012, 57 (16): : 2036 - 2045
  • [28] Shared control architecture based on RFID to control a robot arm using a spontaneous brain-machine interface
    Ubeda, Andres
    Ianez, Eduardo
    Azorin, Jose M.
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (08) : 768 - 774
  • [29] An Integrated Brain-Machine Interface Platform With Thousands of Channels
    Musk, Elon
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (10)
  • [30] Physiological properties of brain-machine interface input signals
    Slutzky, Marc W.
    Flint, Robert D.
    JOURNAL OF NEUROPHYSIOLOGY, 2017, 118 (02) : 1329 - 1343