4TH IBEROAMERICAN MEETING ON OPTICS AND 7TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND THEIR APPLICATIONS
|
2001年
/
4419卷
关键词:
image improvement;
neural network;
system fusion;
D O I:
10.1117/12.437178
中图分类号:
O43 [光学];
学科分类号:
070207 ;
0803 ;
摘要:
The neural network-based technique for improving the quality of the image fusion is proposed as required for the remote sensing (RS) imagery. We propose to exploit information about the point spread functions of the corresponding RS imaging, systems combining it with prior realistic knowledge about the properties of the scene contained in the maximum entropy (ME) a priori image model. Applying the aggregate regularization method to solve the fusion tasks aimed to achieve the best resolution and noise suppression performances of the overall resulting image solves the problem. The proposed fusion method assumes the availability to control the design parameters, which influence the overall restoration performances. Computationally, the fusion method is implemented using the maximum entropy Hopfield-type neural network (MENN) with adjustable parameters. Simulations illustrate the improved performances of the developed MENN-based image fusion method.
机构:
Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Peng Cheng Lab, Shenzhen 518055, Peoples R ChinaPeking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Ma, Siwei
Zhang, Xinfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Dept Comp Sci, Beijing 100049, Peoples R ChinaPeking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Zhang, Xinfeng
Jia, Chuanmin
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Peng Cheng Lab, Shenzhen 518055, Peoples R ChinaPeking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Jia, Chuanmin
Zhao, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Peng Cheng Lab, Shenzhen 518055, Peoples R ChinaPeking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Zhao, Zhenghui
Wang, Shiqi
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R ChinaPeking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Wang, Shiqi
Wang, Shanshe
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
Peng Cheng Lab, Shenzhen 518055, Peoples R ChinaPeking Univ, Sch Elect Engn & Comp Sci, Inst Digital Media, Beijing 100871, Peoples R China
机构:
Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
Univ Chinese Acad Sci, Beijing, Peoples R ChinaChinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
Cai, Xuyi
Wang, Ying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Zhejiang Lab, Beijing, Peoples R China
Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R ChinaChinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
Wang, Ying
Zhang, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R ChinaChinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China