Spatio-temporal modeling of neural source activation from EEG data

被引:0
|
作者
Albu, Alexandra Branzan [1 ]
Mahajan, Sunny Vardhan [1 ]
Zeman, Philip M. [1 ]
Tanaka, James W. [1 ]
机构
[1] Univ Victoria, Dept ECE, Victoria, BC V8W 2Y2, Canada
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a new computer-vision based information visualization paradigm for the electrophysiological study of face recognition. The proposed approach first generates video sequences of voltage maps from EEG data. Next, projections of active sources are detected in each frame using colour information and spatiotemporal consistency. The evolution of source activation is thus translated into a deformable motion of 2D patterns. Hence, the last step of the proposed approach builds a new motion representation, called the Spatio-Temporal Activation Response (STAR), which extracts stimulus- and subject-specific information about neural source activations occurring during the experiment. It is shown that STAR is able to capture relevant information about differences in the cognitive representations elicited by two different visual stimuli.
引用
收藏
页码:1014 / 1017
页数:4
相关论文
共 50 条
  • [21] Spatio-temporal modeling of perimetric test data
    Ibanez, M. V.
    Simo, A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (06) : 497 - 522
  • [22] Spatio-temporal modeling and analysis of fMRI data using NARX neural network
    Luo, Huaien
    Puthusserypady, Sadasivan
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) : 139 - 149
  • [23] Subtopographic EEG source localization after spatio-temporal wavelet decomposition
    Dura, A. D.
    Eryilmaz, H.
    Bayram, A.
    Ademoglu, A.
    Demiralp, T.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2006, 61 (03) : 374 - 374
  • [24] MEG/EEG source localization using spatio-temporal sparse representations
    Polonsky, A
    Zibulevsky, M
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, 2004, 3195 : 1001 - 1008
  • [25] Spatio-temporal neural networks for space-time data modeling and relation discovery
    Edouard Delasalles
    Ali Ziat
    Ludovic Denoyer
    Patrick Gallinari
    Knowledge and Information Systems, 2019, 61 : 1241 - 1267
  • [26] Cross-Node Federated Graph Neural Network for Spatio-Temporal Data Modeling
    Meng, Chuizheng
    Rambhatla, Sirisha
    Liu, Yan
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1202 - 1211
  • [27] Heterogeneous neural metric learning for spatio-temporal modeling of infectious diseases with incomplete data
    Tan, Qi
    Liu, Yang
    Liu, Jiming
    Shi, Benyun
    Xia, Shang
    Zhou, Xiao-Nong
    NEUROCOMPUTING, 2021, 458 : 701 - 713
  • [28] Spatio-temporal neural networks for space-time data modeling and relation discovery
    Delasalles, Edouard
    Ziat, Ali
    Denoyer, Ludovic
    Gallinari, Patrick
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 61 (03) : 1241 - 1267
  • [29] MODELING AND VISUALIZATION OF SPACE OBJECTS SPATIO-TEMPORAL DATA
    Xu Qing
    Zhou Yang
    Zhang Baoming
    Lan ChaoZhen
    4TH ISPRS INTERNATIONAL WORKSHOP 3D-ARCH 2011: 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2011, 38-5 (W16): : 155 - 162
  • [30] Data Driven Spatio-Temporal Modeling of Parking Demand
    Fiez, Tanner
    Ratliff, Lillian J.
    Dowling, Chase
    Zhang, Baosen
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 2757 - 2762