Spatio-temporal modeling of neural source activation from EEG data

被引:0
|
作者
Albu, Alexandra Branzan [1 ]
Mahajan, Sunny Vardhan [1 ]
Zeman, Philip M. [1 ]
Tanaka, James W. [1 ]
机构
[1] Univ Victoria, Dept ECE, Victoria, BC V8W 2Y2, Canada
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper proposes a new computer-vision based information visualization paradigm for the electrophysiological study of face recognition. The proposed approach first generates video sequences of voltage maps from EEG data. Next, projections of active sources are detected in each frame using colour information and spatiotemporal consistency. The evolution of source activation is thus translated into a deformable motion of 2D patterns. Hence, the last step of the proposed approach builds a new motion representation, called the Spatio-Temporal Activation Response (STAR), which extracts stimulus- and subject-specific information about neural source activations occurring during the experiment. It is shown that STAR is able to capture relevant information about differences in the cognitive representations elicited by two different visual stimuli.
引用
收藏
页码:1014 / 1017
页数:4
相关论文
共 50 条
  • [1] EEG Source Localization Using Spatio-Temporal Neural Network
    Song Cui
    Lijuan Duan
    Bei Gong
    Yuanhua Qiao
    Fan Xu
    Juncheng Chen
    Changming Wang
    中国通信, 2019, 16 (07) : 131 - 143
  • [2] EEG Source Localization Using Spatio-Temporal Neural Network
    Cui, Song
    Duan, Lijuan
    Gong, Bei
    Qiao, Yuanhua
    Xu, Fan
    Chen, Juncheng
    Wang, Changming
    CHINA COMMUNICATIONS, 2019, 16 (07) : 131 - 143
  • [3] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [4] Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data
    Doborjeh, Zohreh Gholami
    Doborjeh, Maryam G.
    Kasabov, Nikola
    COGNITIVE COMPUTATION, 2018, 10 (01) : 35 - 48
  • [5] Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data
    Zohreh Gholami Doborjeh
    Maryam G. Doborjeh
    Nikola Kasabov
    Cognitive Computation, 2018, 10 : 35 - 48
  • [6] LORETA solution for Spatio-Temporal EEG Source Reconstruction
    Boughariou, Jihene
    Zouch, Wassim
    Ben Hamida, Ahmed
    2014 1ST INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP 2014), 2014, : 237 - 242
  • [7] Spatio-temporal epileptic spike characterization by distributed EEG source modeling and EEG-triggered fMRI
    Lantz, G
    Seeck, M
    Blanke, O
    Lazeyras, F
    de Peralta, RG
    Spinelli, L
    Ducommun, Y
    Michel, CM
    EPILEPSIA, 1999, 40 : 184 - 184
  • [8] A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data
    Guillaume Crevecoeur
    Hans Hallez
    Peter Van Hese
    Yves D’Asseler
    Luc Dupré
    Rik Van de Walle
    Medical & Biological Engineering & Computing, 2008, 46 : 767 - 777
  • [9] A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data
    Crevecoeur, Guillaume
    Hallez, Hans
    Van Hese, Peter
    D'Asseler, Yves
    Dupre, Luc
    Van De Walle, Rik
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2008, 46 (08) : 767 - 777
  • [10] CONTROLLABLE SPATIO-TEMPORAL SMOOTHNESS CONSTRAINTS FOR EEG SOURCE LOCALIZATION
    Hyde, Damon E.
    Warfield, Simon K.
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 828 - 831