Physiological noise reduction using volumetric functional magnetic resonance inverse imaging

被引:27
|
作者
Lin, Fa-Hsuan [2 ,3 ]
Nummenmaa, Aapo [3 ,4 ]
Witzel, Thomas [5 ]
Polimeni, Jonathan R. [3 ]
Zeffiro, Thomas A. [6 ]
Wang, Fu-Nien [1 ]
Belliveau, John W. [3 ]
机构
[1] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[2] Natl Taiwan Univ, Inst Biomed Engn, Taipei 10764, Taiwan
[3] MGH HST Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
[4] Aalto Univ, Sch Sci & Technol, Dept Biomed Engn & Computat Sci, Espoo, Finland
[5] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[6] Massachusetts Gen Hosp, Neural Syst Grp, Charlestown, MA USA
基金
芬兰科学院; 美国国家卫生研究院;
关键词
event-related; inverse imaging; Inl; visual; MRI; fMRI; neuroimaging; inverse solution; SURFACE-BASED ANALYSIS; ECHO-PLANAR; BRAIN MOTION; FMRI; FLUCTUATIONS; REGISTRATION; ACQUISITION; SUPPRESSION; EIGENMODES; PARAMETERS;
D O I
10.1002/hbm.21403
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Physiological noise arising from a variety of sources can significantly degrade the detection of task-related activity in BOLD-contrast fMRI experiments. If whole head spatial coverage is desired, effective suppression of oscillatory physiological noise from cardiac and respiratory fluctuations is quite difficult without external monitoring, since traditional EPI acquisition methods cannot sample the signal rapidly enough to satisfy the Nyquist sampling theorem, leading to temporal aliasing of noise. Using a combination of high speed magnetic resonance inverse imaging (InI) and digital filtering, we demonstrate that it is possible to suppress cardiac and respiratory noise without auxiliary monitoring, while achieving whole head spatial coverage and reasonable spatial resolution. Our systematic study of the effects of different moving average (MA) digital filters demonstrates that a MA filter with a 2 s window can effectively reduce the variance in the hemodynamic baseline signal, thereby achieving 57%58% improvements in peak z-statistic values compared to unfiltered InI or spatially smoothed EPI data (FWHM = 8.6 mm). In conclusion, the high temporal sampling rates achievable with InI permit significant reductions in physiological noise using standard temporal filtering techniques that result in significant improvements in hemodynamic response estimation. Hum Brain Mapp 33:2815-2830, 2012. (c) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:2815 / 2830
页数:16
相关论文
共 50 条
  • [31] Automatic Classification of Signal and Noise in Functional Magnetic Resonance Imaging Scans Using Convolutional Neural Networks
    Arighelescu, Georgian
    Chira, Camelia
    Mansson, Kristoffer N. T.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I, 2025, 15346 : 75 - 84
  • [32] Neural Dynamics during Resting State: A Functional Magnetic Resonance Imaging Exploration with Reduction and Visualization
    Li, Wei
    Wang, Miao
    Wen, Wen
    Huang, Yue
    Chen, Xi
    Fan, Wenliang
    COMPLEXITY, 2018,
  • [33] Identification and characterisation of midbrain nuclei using optimised functional magnetic resonance imaging
    Limbrick-Oldfield, Eve H.
    Brooks, Jonathan C. W.
    Wise, Richard J. S.
    Padormo, Francesco
    Hajnal, Jo V.
    Beckmann, Christian F.
    Ungless, Mark A.
    NEUROIMAGE, 2012, 59 (02) : 1230 - 1238
  • [34] Characterization of visual processing in temporomandibular disorders using functional magnetic resonance imaging
    Harper, Daniel E.
    Gopinath, Kaundinya
    Smith, Jeremy L.
    Gregory, Mia
    Ichesco, Eric
    Aronovich, Sharon
    Harris, Richard E.
    Harte, Steven E.
    Clauw, Daniel J.
    Fleischer, Candace C.
    BRAIN AND BEHAVIOR, 2023, 13 (03):
  • [35] Acoustic noise in functional magnetic resonance imaging reduces pain unpleasantness ratings
    Boyle, Y.
    Bentley, D. E.
    Watson, A.
    Jones, A. K. P.
    NEUROIMAGE, 2006, 31 (03) : 1278 - 1283
  • [36] Lowering the thermal noise barrier in functional brain mapping with magnetic resonance imaging
    Vizioli, Luca
    Moeller, Steen
    Dowdle, Logan
    Akcakaya, Mehmet
    De Martino, Federico
    Yacoub, Essa
    Ugurbil, Kamil
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [37] Neuropsychiatric dynamics: the study of mental illness using functional magnetic resonance imaging
    Callicott, JH
    Weinberger, DR
    EUROPEAN JOURNAL OF RADIOLOGY, 1999, 30 (02) : 95 - 104
  • [38] The volumetric evaluation of the canine cerebellum by using magnetic resonance imaging
    Katalin, Foeldes
    Borbala, Lorincz
    Rita, Garamvoelgyi
    Gabor, Bajzik
    Richard, Tokai
    Zsuzsanna, Lelovics
    Imre, Repa
    MAGYAR ALLATORVOSOK LAPJA, 2013, 135 (11) : 675 - 684
  • [39] Real-Time Noise Cancellation for Speech Acquired in Interactive Functional Magnetic Resonance Imaging Studies
    Zvyagintsev, Mikhail
    Klasen, Martin
    Mathiak, Krystyna A.
    Weber, Rene
    Edgar, J. Christopher
    Mathiak, Klaus
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (03) : 705 - 713
  • [40] Surface-Based Imaging Methods for High-Resolution Functional Magnetic Resonance Imaging
    Ress, David
    Dhandapani, Sankari
    Katyal, Sucharit
    Greene, Clint
    Bajaj, Chandra
    COMPUTATIONAL MODELING OF OBJECTS REPRESENTED IN IMAGES, PROCEEDINGS, 2010, 6026 : 130 - +