TiO2 nanostructured surfaces for biomedical applications developed by electrochemical anodization

被引:9
|
作者
Strnad, G. [1 ]
Petrovan, C. [2 ]
Russu, O. [3 ]
Jakab-Farkas, L. [4 ]
机构
[1] Petru Major Univ, Fac Engn, Targu Mures, Romania
[2] Univ Med & Pharm, Fac Med Dent, Targu Mures, Romania
[3] Univ Med & Pharm, Fac Med, Targu Mures, Romania
[4] Univ Sapientia, Fac Tech & Human Sci, Targu Mures, Romania
关键词
NANOTUBES; OSSEOINTEGRATION; IMPLANTS; ALLOY;
D O I
10.1088/1757-899X/161/1/012051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Present research demonstrates the formation of self-ordered nanostructured oxide layer on the surface of two phase Ti6Al4V alloy by using electrochemical anodization in H3PO4/HF electrolytes. Our results show that the ordered oxide nanotubes grow on large areas on the samples surface, on both phases of (alpha+beta) Ti6Al4V titanium alloy. We developed nanotubes of 70 nm (internal diameter) using 0.3 wt% HF and of 80 nm using 0.5 wt% HF additions to 1M H3PO4, at an anodization potential of 20 V, and an anodization time of 2 hours. We show that anodization potential has a strong influence on nanostructures morphology. Our results show that nanotubes' internal diameter is similar to 30 nm at 10 V potential, similar to 40 nm at 15 V potential, and similar to 70-80 nm at 20 V potential in anodization process performed in 1M H3PO4 + 0.5 wt% HF, 2 hours. The thickness of the developed nanostructured oxide layer is in 200-250 nm range.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] On the synthesis, characterization and photocatalytic applications of nanostructured TiO2
    Mishra, P. R.
    Srivastava, O. N.
    BULLETIN OF MATERIALS SCIENCE, 2008, 31 (03) : 545 - 550
  • [32] Neural cell growth on TiO2 anatase nanostructured surfaces
    Collazos-Castro, Jorge E.
    Cruz, Ana M.
    Carballo-Vila, Monica
    Lira-Cantu, Monica
    Abad, Llibertat
    Perez del Pino, Angel
    Fraxedas, Jordi
    San Juan, Aurelie
    Fonseca, Carlos
    Pego, Ana P.
    Casan-Pastor, Nieves
    THIN SOLID FILMS, 2009, 518 (01) : 160 - 170
  • [33] Functionalized TiO2 Based Nanomaterials for Biomedical Applications
    Wu, Shuilin
    Weng, Zhengyang
    Liu, Xiangmei
    Yeung, K. W. K.
    Chu, Paul. K.
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (35) : 5464 - 5481
  • [34] Transparent TiO2 nanotubes on zirconia for biomedical applications
    Patel, Sweetu B.
    Baker, Natalie
    Marques, Isabella
    Hamlekhan, Azhang
    Mathew, Mathew T.
    Takoudis, Christos
    Friedrich, Craig
    Sukotjo, Cortino
    Shokuhfar, Tolou
    RSC ADVANCES, 2017, 7 (48) : 30397 - 30410
  • [35] Biomedical Applications of TiO2 Nanostructures: Recent Advances
    Jafari, Sevda
    Mahyad, Baharak
    Hashemzadeh, Hadi
    Janfaza, Sajjad
    Gholikhani, Tooba
    Tayebi, Lobat
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 3447 - 3470
  • [36] Surface and Structural Properties of TiO2 Nanotubes Formation via Electrochemical Anodization
    Jani, Nur Aimi
    Achoi, Mohd Faizal
    Mahat, Mohd Muzamir
    Abdullah, Saifollah
    Lockman, Zainovia
    Noor, Ahmad Fauzi Mohd
    GREEN TECHNOLOGIES FOR SUSTAINABLE & INNOVATION IN MATERIALS, 2013, 686 : 71 - +
  • [37] Anodic Growth and Biomedical Applications of TiO2 Nanotubes
    Cipriano, Aaron F.
    Miller, Christopher
    Liu, Huinan
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (10) : 2977 - 3003
  • [38] Synthesis of TiO2 nanotubes via electrochemical anodization with different water content
    Sivaprakash, V
    Narayanan, R.
    MATERIALS TODAY-PROCEEDINGS, 2021, 37 : 142 - 146
  • [39] Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method
    Ly, Ngoc Tai
    Nguyen, Van Chien
    Dao, Thi Hoa
    To, Le Hong Hoang
    Pham, Duy Long
    Hung Manh Do
    Vu, Dinh Lam
    Le, Van Hong
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2014, 5 (01)
  • [40] Electrical and Point Defect Properties of TiO2 Nanotubes Fabricated by Electrochemical Anodization
    Hanzu, Ilie
    Djenizian, Thierry
    Knauth, Philippe
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13): : 5989 - 5996