Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

被引:83
作者
Ekins, Sean [1 ,2 ]
Reynolds, Robert C. [3 ]
Kim, Hiyun [4 ]
Koo, Mi-Sun [4 ]
Ekonomidis, Marilyn [4 ]
Talaue, Meliza [4 ]
Paget, Steve D. [4 ]
Woolhiser, Lisa K. [6 ]
Lenaerts, Anne J. [6 ]
Bunin, Barry A. [1 ]
Connell, Nancy [4 ]
Freundlich, Joel S. [4 ,5 ]
机构
[1] Collaborat Drug Discovery, Burlingame, CA 94010 USA
[2] Collaborat Chem, Fuquay Varina, NC 27526 USA
[3] So Res Inst, Birmingham, AL 35205 USA
[4] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Ctr Emerging & Reemerging Pathogens, Newark, NJ 07103 USA
[5] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07103 USA
[6] Colorado State Univ, Dept Microbiol Immunol & Pathol, Ft Collins, CO 80523 USA
来源
CHEMISTRY & BIOLOGY | 2013年 / 20卷 / 03期
基金
美国国家卫生研究院;
关键词
NONREPLICATING MYCOBACTERIUM-TUBERCULOSIS; ESCHERICHIA-COLI; FUTURE-PROSPECTS; CHEMINFORMATICS; RESISTANCE; INHIBITORS; PREDICTION; NITROFURANTOIN; IDENTIFICATION; ANTIMICROBIALS;
D O I
10.1016/j.chembiol.2013.01.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (FITS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical FITS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 50 条
[41]   Evaluation of In Vitro Models for Assessment of Human Intestinal Metabolism in Drug Discovery [J].
Davies, Mari ;
Peramuhendige, Prabha ;
King, Lloyd ;
Golding, Melanie ;
Kotian, Apoorva ;
Penney, Mark ;
Shah, Syeda ;
Manevski, Nenad .
DRUG METABOLISM AND DISPOSITION, 2020, 48 (11) :1169-1182
[42]   Frechet ChemNet Distance: A Metric for Generative Models for Molecules in Drug Discovery [J].
Preuer, Kristina ;
Renz, Philipp ;
Unterthiner, Thomas ;
Hochreiter, Sepp ;
Klambauer, Guenter .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (09) :1736-1741
[43]   Patient-derived tumor xenograft models for melanoma drug discovery [J].
Harris, Antoneicka L. ;
Joseph, Richard W. ;
Copland, John A. .
EXPERT OPINION ON DRUG DISCOVERY, 2016, 11 (09) :895-906
[44]   Leveraging machine learning: Covariate-adjusted Bayesian adaptive randomization and subgroup discovery in multi-arm survival trials [J].
Xiong, Wenxuan ;
Roy, Jason ;
Liu, Hao ;
Hu, Liangyuan .
CONTEMPORARY CLINICAL TRIALS, 2024, 142
[45]   INCORPORATING BIOLOGICAL INFORMATION INTO LINEAR MODELS: A BAYESIAN APPROACH TO THE SELECTION OF PATHWAYS AND GENES [J].
Stingo, Francesco C. ;
Chen, Yian A. ;
Tadesse, Mahlet G. ;
Vannucci, Marina .
ANNALS OF APPLIED STATISTICS, 2011, 5 (03) :1978-2002
[46]   Relationship of MATE1 Inhibition and Cytotoxicity in Nephrotoxicity: Application for Safety Evaluation in Early Drug Discovery [J].
Tohyama, Kimio ;
Chisaki, Ikumi ;
Takai, Yuichi ;
Handa, Yasuhiro ;
Miyamoto, Makoto ;
Amano, Nobuyuki .
TOXICOLOGICAL SCIENCES, 2019, 170 (01) :223-233
[47]   Analysis of Information Flows in Interaction Networks: Implication for Drug Discovery and Pharmacological Research [J].
Fliri, Anton F. ;
Loging, William T. ;
Volkmann, Robert A. .
DISCOVERY MEDICINE, 2011, 11 (57) :133-143
[48]   Stem Cell Models for Breast and Colon Cancer: Experimental Approach for Drug Discovery [J].
Telang, Nitin T. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
[49]   Hybrid imbalanced data classifier models for computational discovery of antibiotic drug targets [J].
Kocyigit, Yucel ;
Seker, Huseyin .
2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2014, :812-815
[50]   Real-world application of physiologically based pharmacokinetic models in drug discovery [J].
Santos, Laura G. A. ;
Jaiswal, Swati ;
Chen, Kuan-Fu ;
Jones, Hannah M. ;
Templeton, Ian E. .
DRUG METABOLISM AND DISPOSITION, 2025, 53 (01)