Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

被引:83
作者
Ekins, Sean [1 ,2 ]
Reynolds, Robert C. [3 ]
Kim, Hiyun [4 ]
Koo, Mi-Sun [4 ]
Ekonomidis, Marilyn [4 ]
Talaue, Meliza [4 ]
Paget, Steve D. [4 ]
Woolhiser, Lisa K. [6 ]
Lenaerts, Anne J. [6 ]
Bunin, Barry A. [1 ]
Connell, Nancy [4 ]
Freundlich, Joel S. [4 ,5 ]
机构
[1] Collaborat Drug Discovery, Burlingame, CA 94010 USA
[2] Collaborat Chem, Fuquay Varina, NC 27526 USA
[3] So Res Inst, Birmingham, AL 35205 USA
[4] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Ctr Emerging & Reemerging Pathogens, Newark, NJ 07103 USA
[5] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07103 USA
[6] Colorado State Univ, Dept Microbiol Immunol & Pathol, Ft Collins, CO 80523 USA
来源
CHEMISTRY & BIOLOGY | 2013年 / 20卷 / 03期
基金
美国国家卫生研究院;
关键词
NONREPLICATING MYCOBACTERIUM-TUBERCULOSIS; ESCHERICHIA-COLI; FUTURE-PROSPECTS; CHEMINFORMATICS; RESISTANCE; INHIBITORS; PREDICTION; NITROFURANTOIN; IDENTIFICATION; ANTIMICROBIALS;
D O I
10.1016/j.chembiol.2013.01.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (FITS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical FITS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 50 条
  • [31] Leveraging Advanced In Silico Techniques in Early Drug Discovery: A Study of Potent Small-Molecule YAP-TEAD PPI Disruptors
    Awoonor-Williams, Ernest
    Dickson, Callum J.
    Furet, Pascal
    Golosov, Andrei A.
    Hornak, Viktor
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (08) : 2520 - 2531
  • [32] One Size Does Not Fit All: The Limits of Structure-Based Models in Drug Discovery
    Ross, Gregory A.
    Morris, Garrett M.
    Biggin, Philip C.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (09) : 4266 - 4274
  • [33] Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery
    Lane, Thomas R.
    Foil, Daniel H.
    Minerali, Eni
    Urbina, Fabio
    Zorn, Kimberley M.
    Ekins, Sean
    MOLECULAR PHARMACEUTICS, 2021, 18 (01) : 403 - 415
  • [34] Accurate Models for P-gp Drug Recognition Induced from a Cancer Cell Line Cytotoxicity Screen
    Levatic, Jurica
    Curak, Jasna
    Kralj, Marijeta
    Smuc, Tomislav
    Osmak, Maja
    Supek, Fran
    JOURNAL OF MEDICINAL CHEMISTRY, 2013, 56 (14) : 5691 - 5708
  • [35] A note on identification constraints and information criteria in Bayesian latent variable models
    Graves, Benjamin
    Merkle, Edgar C.
    BEHAVIOR RESEARCH METHODS, 2022, 54 (02) : 795 - 804
  • [36] Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models
    Zak-Szatkowska, Malgorzata
    Bogdan, Malgorzata
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (11) : 2908 - 2924
  • [37] ELICITING PRIOR INFORMATION TO ENHANCE THE PREDICTIVE PERFORMANCE OF BAYESIAN GRAPHICAL MODELS
    MADIGAN, D
    GAVRIN, J
    RAFTERY, AE
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (09) : 2271 - 2292
  • [38] A note on identification constraints and information criteria in Bayesian latent variable models
    Benjamin Graves
    Edgar C. Merkle
    Behavior Research Methods, 2022, 54 : 795 - 804
  • [39] Navigating bioactivity space in anti-tubercular drug discovery through the deployment of advanced machine learning models and cheminformatics tools: a molecular modeling based retrospective study
    Bhowmik, Ratul
    Manaithiya, Ajay
    Vyas, Bharti
    Nath, Ranajit
    Qureshi, Kamal A.
    Parkkila, Seppo
    Aspatwar, Ashok
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [40] Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation
    Nothias, Louis-Felix
    Nothias-Esposito, Melissa
    da Silva, Ricardo
    Wang, Mingxun
    Protsyuk, Ivan
    Zhang, Zheng
    Sarvepalli, Abi
    Leyssen, Pieter
    Touboul, David
    Costa, Jean
    Paolini, Julien
    Alexandrov, Theodore
    Litaudon, Marc
    Dorrestein, Pieter C.
    JOURNAL OF NATURAL PRODUCTS, 2018, 81 (04): : 758 - 767