Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

被引:83
|
作者
Ekins, Sean [1 ,2 ]
Reynolds, Robert C. [3 ]
Kim, Hiyun [4 ]
Koo, Mi-Sun [4 ]
Ekonomidis, Marilyn [4 ]
Talaue, Meliza [4 ]
Paget, Steve D. [4 ]
Woolhiser, Lisa K. [6 ]
Lenaerts, Anne J. [6 ]
Bunin, Barry A. [1 ]
Connell, Nancy [4 ]
Freundlich, Joel S. [4 ,5 ]
机构
[1] Collaborat Drug Discovery, Burlingame, CA 94010 USA
[2] Collaborat Chem, Fuquay Varina, NC 27526 USA
[3] So Res Inst, Birmingham, AL 35205 USA
[4] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Ctr Emerging & Reemerging Pathogens, Newark, NJ 07103 USA
[5] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07103 USA
[6] Colorado State Univ, Dept Microbiol Immunol & Pathol, Ft Collins, CO 80523 USA
来源
CHEMISTRY & BIOLOGY | 2013年 / 20卷 / 03期
基金
美国国家卫生研究院;
关键词
NONREPLICATING MYCOBACTERIUM-TUBERCULOSIS; ESCHERICHIA-COLI; FUTURE-PROSPECTS; CHEMINFORMATICS; RESISTANCE; INHIBITORS; PREDICTION; NITROFURANTOIN; IDENTIFICATION; ANTIMICROBIALS;
D O I
10.1016/j.chembiol.2013.01.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (FITS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical FITS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 50 条
  • [21] The importance of preclinical models for cholangiocarcinoma drug discovery
    Krendl, Felix J.
    Primavesi, Florian
    Oberhuber, Rupert
    Neureiter, Daniel
    Ocker, Matthias
    Bekric, Dino
    Kiesslich, Tobias
    Mayr, Christian
    EXPERT OPINION ON DRUG DISCOVERY, 2025, 20 (02) : 205 - 216
  • [22] Recent advances in bioactivity-guided drug screening strategies for pre-clinical and clinical drug discovery
    Chen, Simin
    Shen, Chenxiao
    Li, Wanyu
    Fan, Yu
    Yang, Dong-Hua
    Wang, Yitao
    Feng, Ruibing
    Li, Guodong
    Zhong, Zhangfeng
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, 181
  • [23] Corrected Bayesian Information Criterion for Stochastic Block Models
    Hu, Jianwei
    Qin, Hong
    Yan, Ting
    Zhao, Yunpeng
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (532) : 1771 - 1783
  • [24] Computational models supporting lead optimization in drug discovery
    Burton, Philip S.
    Poggesi, Italo
    Germani, Massimiliano
    Goodwin, Jay T.
    OPTIMIZING THE DRUG-LIKE PROPERTIES OF LEADS IN DRUG DISCOVERY, 2006, 4 : 195 - +
  • [25] Drug Discovery of Antimicrobial Photosensitizers Using Animal Models
    Sharma, Sulbha K.
    Dai, Tianhong
    Kharkwal, Gitika B.
    Huang, Ying-Ying
    Huang, Liyi
    De Arce, Vida J. Bil
    Tegos, George P.
    Hamblin, Michael R.
    CURRENT PHARMACEUTICAL DESIGN, 2011, 17 (13) : 1303 - 1319
  • [26] Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery
    Perualila-Tan, Nolen Joy
    Shkedy, Ziv
    Talloen, Willem
    Gohlmann, Hinrich W. H.
    Van Moerbeke, Marijke
    Kasim, Adetayo
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2016, 14 (04)
  • [27] Leveraging Advanced In Silico Techniques in Early Drug Discovery: A Study of Potent Small-Molecule YAP-TEAD PPI Disruptors
    Awoonor-Williams, Ernest
    Dickson, Callum J.
    Furet, Pascal
    Golosov, Andrei A.
    Hornak, Viktor
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (08) : 2520 - 2531
  • [28] One Size Does Not Fit All: The Limits of Structure-Based Models in Drug Discovery
    Ross, Gregory A.
    Morris, Garrett M.
    Biggin, Philip C.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (09) : 4266 - 4274
  • [29] Application of Deep Neural Network Models in Drug Discovery Programs
    Grebner, Christoph
    Matter, Hans
    Kofink, Daniel
    Wenzel, Jan
    Schmidt, Friedemann
    Hessler, Gerhard
    CHEMMEDCHEM, 2021, 16 (24) : 3772 - 3786
  • [30] Building predictive ADMET models for early decisions in drug discovery
    Penzotti, JE
    Landrum, GA
    Putta, S
    CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT, 2004, 7 (01) : 49 - 61