Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

被引:83
|
作者
Ekins, Sean [1 ,2 ]
Reynolds, Robert C. [3 ]
Kim, Hiyun [4 ]
Koo, Mi-Sun [4 ]
Ekonomidis, Marilyn [4 ]
Talaue, Meliza [4 ]
Paget, Steve D. [4 ]
Woolhiser, Lisa K. [6 ]
Lenaerts, Anne J. [6 ]
Bunin, Barry A. [1 ]
Connell, Nancy [4 ]
Freundlich, Joel S. [4 ,5 ]
机构
[1] Collaborat Drug Discovery, Burlingame, CA 94010 USA
[2] Collaborat Chem, Fuquay Varina, NC 27526 USA
[3] So Res Inst, Birmingham, AL 35205 USA
[4] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Med, Ctr Emerging & Reemerging Pathogens, Newark, NJ 07103 USA
[5] Univ Med & Dent New Jersey, New Jersey Med Sch, Dept Physiol & Pharmacol, Newark, NJ 07103 USA
[6] Colorado State Univ, Dept Microbiol Immunol & Pathol, Ft Collins, CO 80523 USA
来源
CHEMISTRY & BIOLOGY | 2013年 / 20卷 / 03期
基金
美国国家卫生研究院;
关键词
NONREPLICATING MYCOBACTERIUM-TUBERCULOSIS; ESCHERICHIA-COLI; FUTURE-PROSPECTS; CHEMINFORMATICS; RESISTANCE; INHIBITORS; PREDICTION; NITROFURANTOIN; IDENTIFICATION; ANTIMICROBIALS;
D O I
10.1016/j.chembiol.2013.01.011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (FITS) data to experimentally validate a virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screened a commercial library and experimentally confirmed actives with hit rates exceeding typical FITS results by one to two orders of magnitude. This initial dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 50 条
  • [1] Leveraging molecular structure and bioactivity with chemical language models for de novo drug design
    Moret, Michael
    Pachon Angona, Irene
    Cotos, Leandro
    Yan, Shen
    Atz, Kenneth
    Brunner, Cyrill
    Baumgartner, Martin
    Grisoni, Francesca
    Schneider, Gisbert
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [2] Leveraging the Thermodynamics of Protein Conformations in Drug Discovery
    Zhang, Bin W.
    Fajer, Mikolai
    Chen, Wei
    Moraca, Francesca
    Wang, Lingle
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, : 252 - 264
  • [3] A collaborative database and computational models for tuberculosis drug discovery
    Ekins, Sean
    Bradford, Justin
    Dole, Krishna
    Spektor, Anna
    Gregory, Kellan
    Blondeau, David
    Hohman, Moses
    Bunin, Barry A.
    MOLECULAR BIOSYSTEMS, 2010, 6 (05) : 840 - 851
  • [4] Enhancing Hit Identification in Mycobacterium tuberculosis Drug Discovery Using Validated Dual-Event Bayesian Models
    Ekins, Sean
    Reynolds, Robert C.
    Franzblau, Scott G.
    Wan, Baojie
    Freundlich, Joel S.
    Bunin, Barry A.
    PLOS ONE, 2013, 8 (05):
  • [5] Leveraging Bayesian Approach to Predict Drug Manufacturing Performance
    Ying Fei Li
    Venkat Venkatasubramanian
    Journal of Pharmaceutical Innovation, 2016, 11 : 331 - 338
  • [6] Naive Bayesian Models for Vero Cell Cytotoxicity
    Perryman, Alexander L.
    Patel, Jimmy S.
    Russo, Riccardo
    Singleton, Eric
    Connell, Nancy
    Ekins, Sean
    Freundlich, Joel S.
    PHARMACEUTICAL RESEARCH, 2018, 35 (09)
  • [7] Leveraging Bayesian Approach to Predict Drug Manufacturing Performance
    Li, Ying Fei
    Venkatasubramanian, Venkat
    JOURNAL OF PHARMACEUTICAL INNOVATION, 2016, 11 (04) : 331 - 338
  • [8] Deep Bayesian Experimental Design for Drug Discovery
    Masood, Muhammad Arslan
    Cui, Tianyu
    Kaski, Samuel
    AI IN DRUG DISCOVERY, AIDD 2024, 2025, 14894 : 149 - 159
  • [9] ChEMBL: a large-scale bioactivity database for drug discovery
    Gaulton, Anna
    Bellis, Louisa J.
    Bento, A. Patricia
    Chambers, Jon
    Davies, Mark
    Hersey, Anne
    Light, Yvonne
    McGlinchey, Shaun
    Michalovich, David
    Al-Lazikani, Bissan
    Overington, John P.
    NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) : D1100 - D1107
  • [10] Leveraging Big Data to Transform Target Selection and Drug Discovery
    Chen, B.
    Butte, A. J.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2016, 99 (03) : 285 - 297