Long-range interactions, wobbles, and phase defects in chains of model cilia

被引:25
|
作者
Brumley, Douglas R. [1 ,2 ]
Bruot, Nicolas [3 ,4 ]
Kotar, Jurij [4 ]
Goldstein, Raymond E. [5 ]
Cicuta, Pietro [4 ]
Polin, Marco [6 ]
机构
[1] MIT, Dept Civil & Environm Engn, Ralph M Parsons Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] ETH, Dept Civil Environm & Geomat Engn, CH-8093 Zurich, Switzerland
[3] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[4] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
[5] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[6] Univ Warwick, Phys Dept, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England
来源
PHYSICAL REVIEW FLUIDS | 2016年 / 1卷 / 08期
基金
英国惠康基金;
关键词
METACHRONAL WAVES; SYNCHRONIZATION; OSCILLATORS; NETWORKS;
D O I
10.1103/PhysRevFluids.1.081201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Quantum phase transitions of the extended isotropic XY model with long-range interactions
    Ribeiro, F. G.
    de Lima, J. P.
    Goncalves, L. L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2011, 323 (01) : 39 - 50
  • [42] Phase diagram of an Ising model with long-range frustrating interactions: A theoretical analysis
    Grousson, M
    Tarjus, G
    Viot, P
    PHYSICAL REVIEW E, 2000, 62 (06): : 7781 - 7792
  • [43] Correlations, long-range entanglement, and dynamics in long-range Kitaev chains
    Francica, Gianluca
    Dell'Anna, Luca
    PHYSICAL REVIEW B, 2022, 106 (15)
  • [44] Phase diagram for unzipping DNA with long-range interactions
    Mukamel, EA
    Shakhnovich, EI
    PHYSICAL REVIEW E, 2002, 66 (03): : 1 - 032901
  • [45] Nonequilibrium Phase Transitions in Systems with Long-Range Interactions
    Teles, Tarcisio N.
    Benetti, Fernanda P. da C.
    Pakter, Renato
    Levin, Yan
    PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [46] Phase transitions in simplified models with long-range interactions
    Rocha Filho, T. M.
    Amato, M. A.
    Mello, B. A.
    Figueiredo, A.
    PHYSICAL REVIEW E, 2011, 84 (04):
  • [47] Stability of the Laughlin Phase Against Long-Range Interactions
    Olgiati, Alessandro
    Rougerie, Nicolas
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 237 (03) : 1475 - 1515
  • [48] EXISTENCE OF PHASE-TRANSITIONS FOR LONG-RANGE INTERACTIONS
    ISRAEL, RB
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (01) : 59 - 68
  • [49] Stability of the Laughlin Phase Against Long-Range Interactions
    Alessandro Olgiati
    Nicolas Rougerie
    Archive for Rational Mechanics and Analysis, 2020, 237 : 1475 - 1515
  • [50] The possibility of gapless excitations in antiferromagnetic spin chains with long-range interactions
    Hakobyan, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (47): : L599 - L604